Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Mol Biol Evol ; 38(10): 4149-4165, 2021 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-33170928

RESUMEN

The Taiwanese people are composed of diverse indigenous populations and the Taiwanese Han. About 95% of the Taiwanese identify themselves as Taiwanese Han, but this may not be a homogeneous population because they migrated to the island from various regions of continental East Asia over a period of 400 years. Little is known about the underlying patterns of genetic ancestry, population admixture, and evolutionary adaptation in the Taiwanese Han people. Here, we analyzed the whole-genome single-nucleotide polymorphism genotyping data from 14,401 individuals of Taiwanese Han collected by the Taiwan Biobank and the whole-genome sequencing data for a subset of 772 people. We detected four major genetic ancestries with distinct geographic distributions (i.e., Northern, Southeastern, Japonic, and Island Southeast Asian ancestries) and signatures of population mixture contributing to the genomes of Taiwanese Han. We further scanned for signatures of positive natural selection that caused unusually long-range haplotypes and elevations of hitchhiked variants. As a result, we identified 16 candidate loci in which selection signals can be unambiguously localized at five single genes: CTNNA2, LRP1B, CSNK1G3, ASTN2, and NEO1. Statistical associations were examined in 16 metabolic-related traits to further elucidate the functional effects of each candidate gene. All five genes appear to have pleiotropic connections to various types of disease susceptibility and significant associations with at least one metabolic-related trait. Together, our results provide critical insights for understanding the evolutionary history and adaption of the Taiwanese Han population.


Asunto(s)
Pueblo Asiatico , Genoma , Pueblo Asiatico/genética , Estudio de Asociación del Genoma Completo , Haplotipos , Humanos , Polimorfismo de Nucleótido Simple
3.
R Soc Open Sci ; 10(3): 221636, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36938539

RESUMEN

Although equal sex ratio is ubiquitous and represents an equilibrium in evolutionary theory, biased sex ratios are predicted for certain local conditions. Cases of sex ratio bias have been mostly reported for single species, but little is known about its evolution above the species level. Here, we surveyed progeny sex ratios in 23 species of the nematode genus Caenorhabditis, including 19 for which we tested multiple strains. For the species with multiple strains, five species had female-biased and two had non-biased sex ratios in all strains, respectively. The other 12 species showed polymorphic sex ratios across strains. Female-biased sex ratios could be due to sperm competition whereby X-bearing sperm outcompete nullo-X sperm during fertilization. In this model, when sperm are limited allowing all sperm to be used, sex ratios are expected to be equal. However, in assays limiting mating to a few hours, most strains showed similarly biased sex ratios compared with unlimited mating experiments, except that one C. becei strain showed significantly reduced female bias compared with unlimited mating. Our study shows frequent polymorphism in sex ratios within Caenorhabditis species and that sperm competition alone cannot explain the sex ratio bias.

4.
Sci Rep ; 7(1): 12819, 2017 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-28993668

RESUMEN

Organismal genome sizes vary by six orders of magnitude and appear positively correlated with organismal size and complexity. Neutral models have been proposed to explain the broad patterns of genome size variation based on organism population sizes. In the Caenorhabditis genus, hermaphrodite genomes are smaller than those of gonochoristic species. One possible driving force for this genome size difference could be non-random chromosome segregation. In Caenorhabditis elegans, chromosome assortment is non-independent and violates Mendel's second law. In males, the shorter homologue of a heterozygous autosome pair preferentially co-segregates with the X chromosome while the longer one preferentially co-segregates with the nullo-X (O) chromosome in a process we call "skew". Since hermaphrodites preferentially receive the shorter chromosomes and can start populations independently, their genome size would be predicted to decrease over evolutionary time. If skew is an important driver for genome size reduction in hermaphroditic Caenorhabditis species, then it should be present in all congeneric species. In this study, we tested this hypothesis and found that skew is present in all eight examined species. Our results suggest that skew is likely the ancestral state in this genus. More speculatively, skew may drive genome size patterns in hermaphroditic species in other nematodes.


Asunto(s)
Caenorhabditis elegans/genética , Segregación Cromosómica/genética , Cromosomas/genética , Filogenia , Animales , Trastornos del Desarrollo Sexual/genética , Masculino , Oocitos/metabolismo , Espermatozoides/metabolismo , Transgenes
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA