Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Entropy (Basel) ; 24(1)2022 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-35052128

RESUMEN

The differential diagnosis of epileptic seizures (ES) and psychogenic non-epileptic seizures (PNES) may be difficult, due to the lack of distinctive clinical features. The interictal electroencephalographic (EEG) signal may also be normal in patients with ES. Innovative diagnostic tools that exploit non-linear EEG analysis and deep learning (DL) could provide important support to physicians for clinical diagnosis. In this work, 18 patients with new-onset ES (12 males, 6 females) and 18 patients with video-recorded PNES (2 males, 16 females) with normal interictal EEG at visual inspection were enrolled. None of them was taking psychotropic drugs. A convolutional neural network (CNN) scheme using DL classification was designed to classify the two categories of subjects (ES vs. PNES). The proposed architecture performs an EEG time-frequency transformation and a classification step with a CNN. The CNN was able to classify the EEG recordings of subjects with ES vs. subjects with PNES with 94.4% accuracy. CNN provided high performance in the assigned binary classification when compared to standard learning algorithms (multi-layer perceptron, support vector machine, linear discriminant analysis and quadratic discriminant analysis). In order to interpret how the CNN achieved this performance, information theoretical analysis was carried out. Specifically, the permutation entropy (PE) of the feature maps was evaluated and compared in the two classes. The achieved results, although preliminary, encourage the use of these innovative techniques to support neurologists in early diagnoses.

2.
Sensors (Basel) ; 22(1)2021 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-35009675

RESUMEN

Until now, clinicians are not able to evaluate the Psychogenic Non-Epileptic Seizures (PNES) from the rest-electroencephalography (EEG) readout. No EEG marker can help differentiate PNES cases from healthy subjects. In this paper, we have investigated the power spectrum density (PSD), in resting-state EEGs, to evaluate the abnormalities in PNES affected brains. Additionally, we have used functional connectivity tools, such as phase lag index (PLI), and graph-derived metrics to better observe the integration of distributed information of regular and synchronized multi-scale communication within and across inter-regional brain areas. We proved the utility of our method after enrolling a cohort study of 20 age- and gender-matched PNES and 19 healthy control (HC) subjects. In this work, three classification models, namely support vector machine (SVM), linear discriminant analysis (LDA), and Multilayer perceptron (MLP), have been employed to model the relationship between the functional connectivity features (rest-HC versus rest-PNES). The best performance for the discrimination of participants was obtained using the MLP classifier, reporting a precision of 85.73%, a recall of 86.57%, an F1-score of 78.98%, and, finally, an accuracy of 91.02%. In conclusion, our results hypothesized two main aspects. The first is an intrinsic organization of functional brain networks that reflects a dysfunctional level of integration across brain regions, which can provide new insights into the pathophysiological mechanisms of PNES. The second is that functional connectivity features and MLP could be a promising method to classify rest-EEG data of PNES form healthy controls subjects.


Asunto(s)
Electroencefalografía , Convulsiones , Estudios de Cohortes , Humanos , Aprendizaje Automático , Descanso
3.
Curr Neuropharmacol ; 21(8): 1634-1645, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-35794769

RESUMEN

BACKGROUND: Epilepsy is a common comorbidity of cerebrovascular disease and an increasing socioeconomic burden. OBJECTIVE: We aimed to provide an updated comprehensive review on the state of the art about seizures and epilepsy in stroke, cerebral haemorrhage, and leukoaraiosis. METHODS: We selected English-written articles on epilepsy, stroke, and small vessel disease up until December 2021. We reported the most recent data about epidemiology, pathophysiology, prognosis, and management for each disease. RESULTS: The main predictors for both ES and PSE are the severity and extent of stroke, the presence of cortical involvement and hemorrhagic transformation, while PSE is also predicted by younger age at stroke onset. Few data exist on physiopathology and seizure semiology, and no randomized controlled trial has been performed to standardize the therapeutic approach to post-stroke epilepsy. CONCLUSION: Some aspects of ES and PSE have been well explored, particularly epidemiology and risk factors. On the contrary, few data exist on physiopathology, and existing evidence is mainly based on studies on animal models. Little is also known about seizure semiology, which may also be difficult to interpret by non-epileptologists. Moreover, the therapeutic approach needs standardization as regards indications and the choice of specific ASMs. Future research may help to better elucidate these aspects.


Asunto(s)
Trastornos Cerebrovasculares , Epilepsia , Accidente Cerebrovascular , Animales , Epilepsia/complicaciones , Epilepsia/epidemiología , Epilepsia/terapia , Trastornos Cerebrovasculares/complicaciones , Trastornos Cerebrovasculares/epidemiología , Trastornos Cerebrovasculares/terapia , Convulsiones , Accidente Cerebrovascular/complicaciones , Accidente Cerebrovascular/epidemiología , Accidente Cerebrovascular/terapia , Comorbilidad
4.
Artículo en Inglés | MEDLINE | ID: mdl-36497808

RESUMEN

Identifying subjects with epileptic seizures or psychogenic non-epileptic seizures from healthy subjects via interictal EEG analysis can be a very challenging issue. Indeed, at visual inspection, EEG can be normal in both cases. This paper proposes an automatic diagnosis approach based on deep learning to differentiate three classes: subjects with epileptic seizures (ES), subjects with non-epileptic psychogenic seizures (PNES) and control subjects (CS), analyzed by non-invasive low-density interictal scalp EEG recordings. The EEGs of 42 patients with new-onset ES, 42 patients with PNES video recorded and 19 patients with CS all with normal interictal EEG on visual inspection, were analyzed in the study; none of them was taking psychotropic drugs before registration. The processing pipeline applies empirical mode decomposition (EMD) to 5s EEG segments of 19 channels in order to extract enhanced features learned automatically from the customized convolutional neural network (CNN). The resulting CNN has been shown to perform well during classification, with an accuracy of 85.7%; these results encourage the use of deep processing systems to assist clinicians in difficult clinical settings.


Asunto(s)
Epilepsia , Convulsiones , Humanos , Electroencefalografía/métodos , Redes Neurales de la Computación , Descanso
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA