Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(32): e2301730120, 2023 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-37523544

RESUMEN

The brain employs distinct circuitries to encode positive and negative valence stimuli, and dysfunctions of these neuronal circuits have a key role in the etiopathogenesis of many psychiatric disorders. The Dorsal Raphè Nucleus (DRN) is involved in various behaviors and drives the emotional response to rewarding and aversive experiences. Whether specific subpopulations of neurons within the DRN encode these behaviors with different valence is still unknown. Notably, microRNA expression in the mammalian brain is characterized by tissue and neuronal specificity, suggesting that it might play a role in cell and circuit functionality. However, this specificity has not been fully exploited. Here, we demonstrate that microRNA-34a (miR-34a) is selectively expressed in a subpopulation of GABAergic neurons of the ventrolateral DRN. Moreover, we report that acute exposure to both aversive (restraint stress) and rewarding (chocolate) stimuli reduces GABA release in the DRN, an effect prevented by the inactivation of DRN miR-34a or its genetic deletion in GABAergic neurons in aversive but not rewarding conditions. Finally, miR-34a inhibition selectively reduced passive coping with severe stressors. These data support a role of miR-34a in regulating GABAergic neurotransmitter activity and behavior in a context-dependent manner and suggest that microRNAs could represent a functional signature of specific neuronal subpopulations with valence-specific activity in the brain.


Asunto(s)
Núcleo Dorsal del Rafe , MicroARNs , Humanos , Animales , Núcleo Dorsal del Rafe/metabolismo , Neuronas GABAérgicas/metabolismo , MicroARNs/metabolismo , Mamíferos
2.
Semin Cell Dev Biol ; 94: 164-175, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31004753

RESUMEN

Recently, the xenobiotic hypothesis has implicated the immune system in targeting substances of abuse as foreign molecules and stimulating inflammatory responses. Microglial cells are the resident immune cells of the central nervous system and function in homeostatic surveillance. Microglial changes that are induced by exposure to substances of abuse appear to mediate in part the establishment of addiction and the persistence of drug-mediated biological and behavioral changes. In this context, interest in the study of drug-microglia interactions has increased recently. This review summarizes the most recent preclinical rodent and clinical studies on the interaction between microglia and various classes of drugs of abuse, such as ethanol, psychostimulants, and opioids. The principal biological mechanisms of the communication between substances of abuse and microglia will be described to consider putative mechanisms of the establishment of drug addiction and future potential targets for treating substance use disorder.


Asunto(s)
Inflamación/tratamiento farmacológico , Microglía/efectos de los fármacos , Psicotrópicos/farmacología , Trastornos Relacionados con Sustancias/tratamiento farmacológico , Animales , Humanos , Inflamación/inmunología , Inflamación/patología , Microglía/inmunología , Microglía/patología , Trastornos Relacionados con Sustancias/psicología
3.
Stress ; 24(5): 621-634, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34227918

RESUMEN

This study investigated epigenetic risk factors that may contribute to stress-related cardiac disease in a rodent model. Experiment 1 was designed to evaluate the expression of microRNA-34a (miR-34a), a known modulator of both stress responses and cardiac pathophysiology, in the heart of male adult rats exposed to a single or repeated episodes of social defeat stress. Moreover, RNA sequencing was conducted to identify transcriptomic profile changes in the heart of repeatedly stressed rats. Experiment 2 was designed to assess cardiac electromechanical changes induced by repeated social defeat stress that may predispose rats to cardiac dysfunction. Results indicated a larger cardiac miR-34a expression after repeated social defeat stress compared to a control condition. This molecular modification was associated with increased vulnerability to pharmacologically induced arrhythmias and signs of systolic left ventricular dysfunction. Gene expression analysis identified clusters of differentially expressed genes in the heart of repeatedly stressed rats that are mainly associated with morphological and functional properties of the mitochondria and may be directly regulated by miR-34a. These results suggest the presence of an association between miR-34a overexpression and signs of adverse electromechanical remodeling in the heart of rats exposed to repeated social defeat stress, and point to compromised mitochondria efficiency as a potential mediator of this link. This rat model may provide a useful tool for investigating the causal relationship between miR-34a expression, mitochondrial (dys)function, and cardiac alterations under stressful conditions, which could have important implications in the context of stress-related cardiac disease.


Asunto(s)
MicroARNs , Animales , Corazón , Masculino , MicroARNs/genética , Ratas , Estrés Psicológico/genética
4.
Semin Cell Dev Biol ; 77: 93-103, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-28982627

RESUMEN

Adolescence is considered a developmental period of heightened vulnerability to many psychological dysfunctions-primarily due to the high structural neuronal plasticity that accompanies the associated physical and cognitive gains, rendering an individual highly susceptible to environmental stressors during this time. Recently, interest has been generated in the study of neuronal and behavioral adaptation to adverse experiences during adolescence. This review will provide an overview of the principal neurobehavioral changes that occur during adolescence and describe what happens when the maturation of these functions is altered by stressful environmental stimuli.


Asunto(s)
Conducta del Adolescente/psicología , Encéfalo/crecimiento & desarrollo , Encéfalo/fisiología , Trastornos Mentales/etiología , Estrés Psicológico/psicología , Adolescente , Conducta del Adolescente/fisiología , Factores de Edad , Amígdala del Cerebelo/crecimiento & desarrollo , Animales , Humanos , Sistema Hipotálamo-Hipofisario/crecimiento & desarrollo , Trastornos Mentales/psicología , Ratones , Plasticidad Neuronal/fisiología , Sistema Hipófiso-Suprarrenal/crecimiento & desarrollo
5.
Addict Biol ; 22(4): 911-922, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26870906

RESUMEN

Childhood maltreatment is associated with increased severity of substance use disorder and frequent relapse to drug use following abstinence. However, the molecular and neurobiological substrates that are engaged during early traumatic events and mediate the greater risk of relapse are poorly understood and knowledge of risk factors is to date extremely limited. In this study, we modeled childhood maltreatment by exposing juvenile mice to a threatening social experience (social stressed, S-S). We showed that S-S experience influenced the propensity to reinstate cocaine-seeking after periods of withdrawal in adulthood. By exploring global gene expression in blood leukocytes we found that this behavioral phenotype was associated with greater blood coagulation. In parallel, impairments in brain microvasculature were observed in S-S mice. Furthermore, treatment with an anticoagulant agent during withdrawal abolished the susceptibility to reinstate cocaine-seeking in S-S mice. These findings provide novel insights into a possible molecular mechanism by which childhood maltreatment heightens the risk for relapse in cocaine-dependent individuals.


Asunto(s)
Coagulación Sanguínea/fisiología , Encéfalo/irrigación sanguínea , Trastornos Relacionados con Cocaína/etiología , Cocaína/administración & dosificación , Conducta Social , Estrés Psicológico/complicaciones , Animales , Conducta Animal , Trastornos Relacionados con Cocaína/fisiopatología , Modelos Animales de Enfermedad , Masculino , Ratones , Ratones Endogámicos DBA , Estrés Psicológico/fisiopatología
6.
Mol Neurobiol ; 59(6): 3913-3932, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35435618

RESUMEN

Early life stress (ELS) is known to modify trajectories of brain dopaminergic development, but the mechanisms underlying have not been determined. ELS perturbs immune system and microglia reactivity, and inflammation and microglia influence dopaminergic transmission and development. Whether microglia mediate the effects of ELS on dopamine (DA) system development is still unknown. We explored the effects of repeated early social stress on development of the dopaminergic system in male and female mice through histological, electrophysiological, and transcriptomic analyses. Furthermore, we tested whether these effects could be mediated by ELS-induced altered microglia/immune activity through a pharmacological approach. We found that social stress in early life altered DA neurons morphology, reduced dopamine transporter (DAT) and tyrosine hydroxylase expression, and lowered DAT-mediated currents in the ventral tegmental area but not substantia nigra of male mice only. Notably, stress-induced DA alterations were prevented by minocycline, an inhibitor of microglia activation. Transcriptome analysis in the developing male ventral tegmental area revealed that ELS caused downregulation of dopaminergic transmission and alteration in hormonal and peptide signaling pathways. Results from this study offer new insight into the mechanisms of stress response and altered brain dopaminergic maturation after ELS, providing evidence of neuroimmune interaction, sex differences, and regional specificity.


Asunto(s)
Neuronas Dopaminérgicas , Minociclina , Estrés Psicológico , Factores de Edad , Animales , Neuronas Dopaminérgicas/metabolismo , Femenino , Masculino , Ratones , Minociclina/farmacología , Factores Sexuales , Sustancia Negra/patología , Tirosina 3-Monooxigenasa/metabolismo , Área Tegmental Ventral/metabolismo
7.
Nat Neurosci ; 10(7): 896-902, 2007 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-17558402

RESUMEN

Serotonin receptor 1A knockout (Htr1a(KO)) mice show increased anxiety-related behavior in tests measuring innate avoidance. Here we demonstrate that Htr1a(KO) mice show enhanced fear conditioning to ambiguous conditioned stimuli, a hallmark of human anxiety. To examine the involvement of specific forebrain circuits in this phenotype, we developed a pharmacogenetic technique for the rapid tissue- and cell type-specific silencing of neural activity in vivo. Inhibition of neurons in the central nucleus of the amygdala suppressed conditioned responses to both ambiguous and nonambiguous cues. In contrast, inhibition of hippocampal dentate gyrus granule cells selectively suppressed conditioned responses to ambiguous cues and reversed the knockout phenotype. These data demonstrate that Htr1a(KO) mice have a bias in the processing of threatening cues that is moderated by hippocampal mossy-fiber circuits, and suggest that the hippocampus is important in the response to ambiguous aversive stimuli.


Asunto(s)
Señales (Psicología) , Giro Dentado/fisiología , Receptor de Serotonina 5-HT1A/genética , Receptor de Serotonina 5-HT1A/fisiología , 8-Hidroxi-2-(di-n-propilamino)tetralin/farmacología , Amígdala del Cerebelo/fisiología , Animales , Ansiedad/genética , Ansiedad/fisiopatología , Autorradiografía , Conducta Animal/fisiología , Línea Celular , Condicionamiento Operante/fisiología , Gránulos Citoplasmáticos/fisiología , Giro Dentado/efectos de los fármacos , Implantes de Medicamentos , Electrofisiología , Miedo/fisiología , Femenino , Masculino , Ratones , Ratones Noqueados , Ratones Transgénicos , Fenotipo , Piperazinas/administración & dosificación , Piperazinas/farmacología , Piridinas/administración & dosificación , Piridinas/farmacología , Receptor de Serotonina 5-HT1A/efectos de los fármacos , Antagonistas de la Serotonina/administración & dosificación , Antagonistas de la Serotonina/farmacología , Agonistas de Receptores de Serotonina/farmacología
8.
Front Neurosci ; 15: 771511, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34924938

RESUMEN

A large body of research has documented the long-term harms of childhood sexual abuse (CSA) on an individual's emotional-adaptive function and mental health. Recent studies have also provided evidence of the biological impact of CSA, implicating specific alterations in many systems, including the endocrine and immune systems, and in DNA and chromatin, in the pathogenesis of medical disorders. Although the effects of CSA are often examined with regard to the general impact of early-life traumatic experiences, the study of CSA per sè, as a trigger of specific pathogenic pathways, would be more appropriate to understand their long-term implications and develop tailored diagnostic and therapeutic strategies. Based on these premises, this narrative minireview summarizes the research on the short-term and long-term sequelae of CSA, focusing on dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis, the effects on the immune system, and the changes to DNA through altered methylation. Also, we discuss the literature that examines dysfunctional DNA telomere erosion and oxidative stress markers as a sign of CSA. Finally, recent evidence of the intergenerational transmission of the effects of CSA is reported. The impact of CSA on brain connectivity and functions is out of the scope of this review, thus brain imaging studies are not included. The results of this minireview are discussed, considering their implications for prevention and clinical practice.

9.
Neuropharmacology ; 190: 108559, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-33845072

RESUMEN

Selective serotonin reuptake inhibitors (SSRIs) are designed to improve mood by raising extracellular serotonin levels through the blockade of the serotonin transporter. However, they exhibit a slow onset of action, suggesting the involvement of adaptive regulatory mechanisms. We hypothesized that the microRNA-34 family facilitates the therapeutic activity of SSRIs. We show that genetic deletion of these microRNAs in mice impairs the response to chronic, but not acute, fluoxetine treatment, with a specific effect on behavioral constructs that are related to depression, rather than anxiety. Moreover, using a pharmacological strategy, we found that an increased expression of the serotonin 2C (5-HT2C) receptor in the dorsal raphe region of the brain contributes to this phenotype. The onset of the therapeutic efficacy of SSRIs is paralleled by the desensitization of the 5-HT2C receptor in the dorsal raphe, and 5-HT2C is a putative target of microRNA-34. In this study, acute and chronic fluoxetine treatment differentially alters the expression of 5-HT2C and microRNA-34a in the dorsal raphe. Moreover, by in vitro luciferase assay, we demonstrated the repressive regulatory activity of microRNA-34a against 5-HT2C mRNA. Specific blockade of this interaction through local infusion of a target site blocker was sufficient to prevent the behavioral effects of chronic fluoxetine. Our results demonstrate a new miR-34a-mediated regulatory mechanism of 5-HT2C expression in the dorsal raphe and implicate it in eliciting the behavioral responses to chronic fluoxetine treatment.


Asunto(s)
Antidepresivos de Segunda Generación/farmacología , Núcleo Dorsal del Rafe/efectos de los fármacos , Fluoxetina/farmacología , Locomoción/efectos de los fármacos , MicroARNs/efectos de los fármacos , Receptor de Serotonina 5-HT2C/efectos de los fármacos , Animales , Conducta Animal/efectos de los fármacos , Núcleo Dorsal del Rafe/metabolismo , Locomoción/genética , Ratones , Ratones Noqueados , MicroARNs/genética , Receptor de Serotonina 5-HT2C/genética , Regulación hacia Arriba
10.
Neurobiol Stress ; 15: 100406, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34660854

RESUMEN

Early life experiences that affect the attachment bond formation can alter developmental trajectories and result in pathological outcomes in a sex-related manner. However, the molecular basis of sex differences is quite unknown. The dopaminergic system originating from the ventral tegmental area has been proposed to be a key mediator of this process. Here we exploited a murine model of early adversity (Repeated Cross Fostering, RCF) to test how interfering with the attachment bond formation affects the VTA-related functions in a sex-specific manner. Through a comprehensive behavioral screening, within the NiH RDoC framework, and by next-generation RNA-Seq experiments, we analyzed the long-lasting effect of RCF on behavioral and transcriptional profiles related to the VTA, across two different inbred strains of mouse in both sexes. We found that RCF impacted to an extremely greater extent VTA-related behaviors in females than in males and this result mirrored the transcriptional alterations in the VTA that were almost exclusively observed in females. The sexual dimorphism was conserved across two different inbred strains in spite of their divergent long lasting consequences of RCF exposure. Our data suggest that to be female primes a sub-set of genes to respond to early environmental perturbations. This is, to the best of our knowledge, the first evidence of an almost exclusive effect of early life experiences on females, thus mirroring the extremely stronger impact of precocious aversive events reported in clinical studies in women.

11.
J Clin Med ; 9(2)2020 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-32046333

RESUMEN

The putative effects of early-life stress (ELS) on later behavior and neurobiology have been widely investigated. Recently, microglia have been implicated in mediating some of the effects of ELS on behavior. In this review, findings from preclinical and clinical literature with a specific focus on microglial alterations induced by the exposure to ELS (i.e., exposure to behavioral stressors or environmental agents and infection) are summarized. These studies were utilized to interpret changes in developmental trajectories based on the time at which the stress occurred, as well as the paradigm used. ELS and microglial alterations were found to be associated with a wide array of deficits including cognitive performance, memory, reward processing, and processing of social stimuli. Four general conclusions emerged: (1) ELS interferes with microglial developmental programs, including their proliferation and death and their phagocytic activity; (2) this can affect neuronal and non-neuronal developmental processes, which are dynamic during development and for which microglial activity is instrumental; (3) the effects are extremely dependent on the time point at which the investigation is carried out; and (4) both pre- and postnatal ELS can prime microglial reactivity, indicating a long-lasting alteration, which has been implicated in behavioral abnormalities later in life.

12.
J Affect Disord ; 276: 351-360, 2020 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-32871665

RESUMEN

BACKGROUND: The syndromic diagnosis of major depressive disorder (MDD) is associated with individual differences in prognosis, course, treatment response, and outcome. There is evidence that patients with a history to adverse childhood experiences (ACEs) may belong to a distinct clinical subgroup. The combination of data on ACEs and blood biomarkers could allow the identification of diagnostic MDD subgroups. METHODS: We selected several blood markers (global DNA methylation, and VEGF-a, TOLLIP, SIRT1, miR-34a genes) among factors that contribute to the pathogenetic mechanisms of MDD. We examined their level in 37 MDD patients and 30 healthy subjects. ACEs were measured by the Parental Bonding Instrument and the Childhood Trauma Questionnaire. RESULTS: We found significant differences between patients and healthy subjects in three biomarkers (TOLLIP, VEGF-a, and global DNA methylation), independently from the confounding effect of parental care received. By contrast, SIRT1 differences were modulated by quality of parental care. The lowest levels of SIRT1 were recorded in patients with active symptoms and low maternal/paternal care. miR-34a and SIRT1 levels were associated with MDD symptoms especially in early-life stressed patients. LIMITATIONS: Small sample size, no information on personality comorbidity and suicidal history, cross-sectional definition of remission, and lack of follow-up. CONCLUSIONS: Our findings suggest that the levels of global DNA methylation, TOLLIP, and VEGF-a reflect pathophysiological changes associated with MDD that are independent from the long-term effects of low parental care. This study also suggests that SIRT1 may be an additional variable distinguishing the ecophenotype that includes MDD patients with exposure to ACEs.


Asunto(s)
Experiencias Adversas de la Infancia , Trastorno Depresivo Mayor , Biomarcadores , Niño , Estudios Transversales , Depresión , Trastorno Depresivo Mayor/diagnóstico , Humanos , Péptidos y Proteínas de Señalización Intracelular
13.
Neurobiol Stress ; 13: 100249, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33344704

RESUMEN

The existence of a proportional relationship between the number of early-life stress (ELS) events experienced and the impoverishment of child mental health has been hypothesized. However, different types of ELS experiences may be associated with different neuro-psycho-biological impacts, due to differences in the intrinsic nature of the stress. DNA methylation is one of the molecular mechanisms that have been implicated in the "translation" of ELS exposure into neurobiological and behavioral abnormalities during adulthood. Here, we investigated whether different ELS experiences resulted in differential impacts on global DNA methylation levels in the brain and blood samples from mice and humans. ELS exposure in mice resulted in observable changes in adulthood, with exposure to social isolation inducing more dramatic alterations in global DNA methylation levels in several brain structures compared with exposure to a social threatening environment. Moreover, these two types of stress resulted in differential impacts on the epigenetic programming of different brain regions and cellular populations, namely microglia. In a pilot clinical study, blood global DNA methylation levels and exposure to childhood neglect or abuse were investigated in patients presenting with major depressive disorder or substance use disorder. A significant effect of the mental health diagnosis on global methylation levels was observed, but no effect of either childhood abuse or neglect was detected. These findings demonstrate that different types of ELS have differential impacts on epigenetic programming, through DNA methylation in specific brain regions, and that these differential impacts are associated with the different behavioral outcomes observed after ELS experiences.

14.
Brain Res ; 1736: 146763, 2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32169579

RESUMEN

The Dorsal Raphe (DR) is the primary source of serotonergic input in the brain and a center for the homeostatic maintenance of the serotonergic tone. Under repeated stimulation, it can undergo adaptive modifications that alter serotonergic neurotransmission, which can lead to behavioral dysfunction. Post-transcriptional regulation by microRNAs is implicated in these adaptations. However, a global microRNA/target network effect on the DR neuroplasticity has yet to be elucidated. Here we investigate the microRNAs/mRNAs regulatory activity in the mouse DR after a chronic stress experience. First, we assessed the behavioral consequences of repeated restraint stress exposure and the functional adaptations of the DR by measuring the change in acute stress-induced serotonin release. Then, through next generation RNA-Seq of Argonaute2-bound RNA (RISC-Seq) we identified microRNAs and their targets that are associated to the RISC complex of the DR in unstressed and stressed mice. We mapped the potential microRNA/mRNA network within the stress-altered transcripts, uncovering new interactions that contribute to the chronic stress-induced DR modifications.


Asunto(s)
Núcleo Dorsal del Rafe/metabolismo , MicroARNs/genética , Estrés Psicológico/genética , Animales , Secuencia de Bases/genética , Núcleo Dorsal del Rafe/fisiología , Expresión Génica/genética , Regulación de la Expresión Génica/genética , Redes Reguladoras de Genes/genética , Masculino , Ratones , Ratones Endogámicos C57BL , MicroARNs/metabolismo , Plasticidad Neuronal/genética , ARN Mensajero/genética , Análisis de Secuencia de ARN/métodos , Serotonina/metabolismo , Estrés Psicológico/metabolismo , Estrés Psicológico/fisiopatología
15.
Mol Neurobiol ; 57(2): 823-836, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31482401

RESUMEN

Chronic stress exposure is known to increase vulnerability to the expression of psychiatric disorders, such as depression. Clinical and preclinical evidences support the involvement of the microRNA-34 family in stress-related psychiatric conditions and in the regulation of stress responses. However, the mechanism and the multiple targets by which the microRNA-34 family can affect the stress response and stress-related behavioral alteration are not fully known. Here, with the aid of constitutive and conditional genetic strategy, we examined the role of microRNA-34 family in the expression of depression-like phenotype in mice induced by chronic stress exposure, and we identified their "in vivo" targets during the stressful challenge. We found that microRNA-34a, under chronic stress, is significantly up-regulated in the mouse raphe nuclei, where its recruitment is necessary to induce depression-like behavioral alterations and impact the function of the serotonergic system. Moreover, by next-generation RNA-seq of Ago-2-bound mRNAs, we identified genes that are targeted by microRNA-34a in response to chronic stress and that are likely to mediate its effects.


Asunto(s)
Conducta Animal , Depresión/genética , Núcleo Dorsal del Rafe/metabolismo , Regulación de la Expresión Génica , MicroARNs/metabolismo , Animales , Enfermedad Crónica , Eliminación de Gen , Ratones Noqueados , MicroARNs/genética , Complejo Silenciador Inducido por ARN/metabolismo , Estrés Psicológico/genética , Regulación hacia Arriba/genética
16.
Mol Neurobiol ; 57(1): 586, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31823196

RESUMEN

The original version of this article unfortunately contained a mistake in Figure 3. The drawing superimposed on photomicrographs to identify the region of Dorsal raphè Nuclei was inappropriately positioned. The corrected figure is given below.

17.
Neuropharmacology ; 168: 108019, 2020 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-32113966

RESUMEN

Although several studies have been performed in rodents, non-human primates and humans, the biological basis of vulnerability to develop cocaine addiction remains largely unknown. Exposure to critical early events (as Repeated Cross Fostering (RCF)) has been reported to increase sensitivity to cocaine effects in adult C57BL/6J female mice. Using a microarray approach, here we report data showing a strong engagement of X-linked lymphocyte-regulated 4a and 4b (Xlr4) genes in cocaine effects. The expression of Xlr4, a gene involved in chromatin remodeling and dendritic spine morphology, was reduced into the Nucleus Accumbens (NAc) of adult RCF C57BL/6J female. We used virally mediated accumbal Xlr4 down-modulation (AAVXlr4-KD) to investigate the role of this gene in vulnerability to cocaine effects. AAVXlr4-KD animals show a potentiated behavioral and neurochemical response to cocaine, reinstatement following cocaine withdrawal and cocaine-induced spine density alterations in the Medium-Sized Spiny Neurons of NAc. We propose Xlr4 as a new candidate gene mediating the cocaine effects.


Asunto(s)
Trastornos Relacionados con Cocaína/genética , Trastornos Relacionados con Cocaína/metabolismo , Estudios de Asociación Genética/métodos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Núcleo Accumbens/metabolismo , Animales , Cocaína/administración & dosificación , Inhibidores de Captación de Dopamina/administración & dosificación , Femenino , Vectores Genéticos/administración & dosificación , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos DBA , Microdiálisis/métodos , Proteínas Nucleares/antagonistas & inhibidores , Núcleo Accumbens/efectos de los fármacos
18.
J Neurosci ; 28(24): 6250-7, 2008 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-18550767

RESUMEN

Mice lacking the serotonin receptor 1A [Htr1aknock-out (Htr1a(KO))] display increased innate and conditioned anxiety-related behavior. Expression of the receptor in the mouse forebrain during development is sufficient to restore normal anxiety-related behavior to knock-out mice, demonstrating a role for serotonin in the developmental programming of anxiety circuits. However, the precise developmental period as well as the signaling pathways and neural substrates involved in this phenomenon are unknown. Here, we show that pharmacological blockade of the receptor from postnatal day 13 (P13)-P34 is sufficient to reproduce the knock-out phenotype in adulthood, thus defining a role for serotonin in the maturation and refinement of anxiety circuits during a limited postnatal period. Furthermore, we identify increases in the phosphorylation of alpha-Ca(2+)/calmodulin-dependent protein kinase II (alphaCaMKII) at threonine 286 in the hippocampus of young Htr1a(KO) mice under anxiety-provoking conditions. Increases in alphaCaMKII phosphorylation were most pronounced in the CA1 region of the hippocampus and were localized to the extrasynaptic compartment, consistent with a tissue-specific effect of the receptor. No changes in alphaCaMKII phosphorylation were found in adult knock-out mice, suggesting a transient role of alphaCaMKII as a downstream target of the receptor. Finally, the anxiety phenotype was abolished when knock-out mice were crossed to mice in which alphaCaMKII phosphorylation was compromised by the heterozygous mutation of threonine 286 into alanine. These findings suggest that modulation of alphaCaMKII function by serotonin during a restricted postnatal period contributes to the developmental programming of anxiety-related behavior.


Asunto(s)
Ansiedad/etiología , Ansiedad/genética , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Receptor de Serotonina 5-HT1A/deficiencia , Actinas/metabolismo , Alanina/genética , Análisis de Varianza , Animales , Animales Recién Nacidos , Ansiedad/tratamiento farmacológico , Conducta Animal , Homólogo 4 de la Proteína Discs Large , Conducta Exploratoria/efectos de los fármacos , Conducta Exploratoria/fisiología , Guanilato-Quinasas , Hipocampo/metabolismo , Hipocampo/ultraestructura , Hipotermia Inducida , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mutación/fisiología , Fosforilación , Piperazinas/uso terapéutico , Piridinas/uso terapéutico , Antagonistas de la Serotonina/uso terapéutico , Sinaptosomas/metabolismo , Treonina/genética , Treonina/metabolismo
19.
Neuroscience ; 413: 1-10, 2019 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-31228589

RESUMEN

Alterations in early environmental conditions that interfere with the creation of a stable mother-pup bond have been suggested to be a risk factor for the development of stress-related psychopathologies later in life. The long-lasting effects of early experiences are mediated by changes in various cerebral circuits, such as the corticolimbic system, which processes aversive and rewarding stimuli. However, it is evident that the early environment is not sufficient per se to induce psychiatric disorders; interindividual (eg, sex-based) differences in the response to environmental challenges exist. To examine the sex-related effects that are induced by an early experience on later events in adulthood, we determine the enduring effects of repeated cross-fostering (RCF) in female and male C57BL/6J mice. To this end, we assessed the behavioral phenotype of RCF and control (male and female) mice in the saccharine preference test and cocaine-induced conditioned place preference to evaluate the response to natural and pharmacological stimuli and in the elevated plus maze test and forced swimming test to measure their anxiety- and depression-like behavior. We also evaluated FST-induced c-Fos immunoreactivity in various brain regions that are engaged in the response to acute stress exposure (FST). Notably, RCF has opposing effects on the adult response to these tests between sexes, directing male mice toward an "anhedonia-like" phenotype and increasing the sensitivity for rewarding stimuli in female mice.


Asunto(s)
Conducta Animal/fisiología , Caracteres Sexuales , Estrés Psicológico/metabolismo , Anhedonia/fisiología , Animales , Conducta Animal/efectos de los fármacos , Encéfalo/crecimiento & desarrollo , Encéfalo/metabolismo , Cocaína/farmacología , Corticosterona/sangre , Modelos Animales de Enfermedad , Inhibidores de Captación de Dopamina/farmacología , Femenino , Masculino , Privación Materna , Ratones Endogámicos C57BL , Proteínas Proto-Oncogénicas c-fos/metabolismo , Distribución Aleatoria
20.
Mol Neurobiol ; 55(9): 7401-7412, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29417477

RESUMEN

Recent studies show that microRNA-34 (miR-34) family is critical in the regulation of stress response also suggesting that it may contribute to the individual responsiveness to stress. We have recently demonstrated that mice carrying a genetic deletion of all miR-34 isoforms (triple knockout, TKO) lack the stress-induced serotonin (5-HT) and GABA release in the medial prefrontal cortex (mpFC) and basolateral amygdala (BLA), respectively. Here, we evaluated if the absence of miR-34 was also able to modify the stress-coping strategy in the forced swimming test. We found that the blunted neurochemical response to stress was associated with lower levels of immobility (index of active coping behavior) in TKO compared to WT mice. Interestingly, among the brain regions mostly involved in the stress-related behaviors, the miR-34 displayed the strongest expression in the dorsal raphe nuclei (DRN) of wild-type (WT) mice. In the DRN, the corticotropin-releasing factor receptors (CRFR) 1 and 2, contribute to determine the stress-coping style and the CRFR1 is a target of miR-34. Thus, we hypothesized that the miR-34-dependent modulation of CRFR1 expression may be involved in the DRN regulation of stress-coping strategies. In line with this hypothesis, we found increased CRFR1 levels in the DNR of TKO compared to WT mice. Moreover, infusion of CRFR1 antagonist in the DRN of TKO mice reverted their behavioral and neurochemical phenotype. We propose that miR-34 modulate the mpFC 5-HT/BLA GABA response to stress acting on CRFR1 in the DRN and that this mechanism could contribute to determine individual stress-coping strategy.


Asunto(s)
Amígdala del Cerebelo/metabolismo , Conducta Animal , MicroARNs/metabolismo , Corteza Prefrontal/metabolismo , Receptores de Hormona Liberadora de Corticotropina/metabolismo , Serotonina/metabolismo , Estrés Psicológico/genética , Ácido gamma-Aminobutírico/metabolismo , Acenaftenos/farmacología , Amígdala del Cerebelo/efectos de los fármacos , Animales , Conducta Animal/efectos de los fármacos , Hormona Liberadora de Corticotropina/farmacología , Núcleo Dorsal del Rafe/efectos de los fármacos , Núcleo Dorsal del Rafe/metabolismo , Eliminación de Gen , Inmovilización , Masculino , Ratones , Ratones Noqueados , MicroARNs/genética , Actividad Motora/efectos de los fármacos , Natación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA