Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Nanoscale ; 16(13): 6531-6547, 2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38488880

RESUMEN

In this manuscript, a comprehensive study is presented on Fe-based electrocatalysts with mono, bi, and tri-metallic compositions, emphasizing the influence of processing-structure correlations on the electrocatalytic activity for the oxygen reduction reaction (ORR) in the alkaline medium. These electrocatalysts were synthesized through the mixing of transition metal phthalocyanines (TM-Pc) with conductive carbon support, followed by controlled thermal treatment at specific temperatures (600 °C and 900 °C). An extensive analysis was conducted, employing various techniques, including X-ray Absorption Spectroscopy (XAS), Transmission Electron Microscopy (TEM), and X-ray Diffraction (XRD), providing valuable insights into the structural characteristics of the synthesized nanoparticles. Importantly, an increase in the Fe-Pc weight percentage from 10% to 30% enhanced the ORR activity, although not proportionally. Furthermore, a comparative analysis between mono, bi, and tri-metallic samples subjected to different functionalization temperatures highlighted the superior electrocatalytic activity of electrocatalysts functionalized at 600 °C, particularly Fe 600 and Fe-Ni-Cu 600. These electrocatalysts featured Eon values of 0.96 V vs. RHE and E1/2 values of 0.9 V vs. RHE, with the added benefit of reduced anionic peroxide production. The potential of these Fe-based electrocatalysts to enhance ORR efficiency is underscored by this research, contributing to the development of more effective and sustainable electrocatalysts for energy conversion technologies.

2.
Chemistry ; 19(11): 3729-34, 2013 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-23364889

RESUMEN

The combined activity of the 1.1.1-cryptand and of a dicopper(II) bistren cryptate complex including chloride makes the Cl(-) ion be continuously and slowly delivered to the solution, without any external intervention. The 1.1.1-cryptand slowly releases OH(-) ions, according to a defined kinetics, and each OH(-) ion displaces a Cl(-) ion from the cryptate. Chloride displacement induces a sharp colour change from bright yellow to aquamarine and can be conveniently monitored spectrophotometrically, even in diluted solutions. The 1.1.1-cryptand is the motor of a molecular dispenser (the dicopper(II) cryptate) delivering chloride ion automatically, from the inside of the solution.

3.
Polymers (Basel) ; 15(6)2023 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-36987335

RESUMEN

This paper describes the use of a commercial Fumasep® FAA3-50 membrane as an anion exchange membrane (AEM) in alkaline direct methanol fuel cells (ADMFCs). The membrane, supplied in bromide form, is first exchanged in chloride and successively in the hydroxide form. Anionic conductivity measurements are carried out in both a KOH aqueous solution and in a KOH/methanol mixture. AEM-DMFC tests are performed by feeding 1 M methanol, with or without 1 M KOH as a supporting electrolyte. A maximum power density of 5.2 mW cm-2 at 60 °C and 33.2 mW cm-2 at 80 °C is reached in KOH-free feeding and in the alkaline mixture, respectively. These values are in good agreement with some results in the literature obtained with similar experimental conditions but with different anion exchange membranes (AEMs). Finally, methanol crossover is investigated and corresponds to a maximum value of 1.45 × 10-8 mol s-1 cm-2 at 50 °C in a 1 M KOH methanol solution, thus indicating that the Fumasep® FAA3-50 membrane in OH form is a good candidate for ADMFC application.

4.
Polymers (Basel) ; 12(9)2020 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-32899679

RESUMEN

Manufacturing new electrolytes with high ionic conductivity has been a crucial challenge in the development and large-scale distribution of fuel cell devices. In this work, we present two Nafion composite membranes containing a non-stoichiometric calcium titanate perovskite (CaTiO3-δ) as a filler. These membranes are proposed as a proton exchange electrolyte for Polymer Electrolyte Membrane (PEM) fuel cell devices. More precisely, two different perovskite concentrations of 5 wt% and 10 wt%, with respect to Nafion, are considered. The structural, morphological, and chemical properties of the composite membranes are studied, revealing an inhomogeneous distribution of the filler within the polymer matrix. Direct methanol fuel cell (DMFC) tests, at 110 °C and 2 M methanol concentration, were also performed. It was observed that the membrane containing 5 wt% of the additive allows the highest cell performance in comparison to the other samples, with a maximum power density of about 70 mW cm-2 at 200 mA cm-2. Consequently, the ability of the perovskite structure to support proton carriers is here confirmed, suggesting an interesting strategy to obtain successful materials for electrochemical devices.

5.
Polymers (Basel) ; 12(12)2020 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-33333931

RESUMEN

Tandem photo-electro-chemical cells composed of an assembly of a solid electrolyte membrane and two low-cost photoelectrodes have been developed to generate green solar fuel from water-splitting. In this regard, an anion-exchange polymer-electrolyte membrane, able to separate H2 evolved at the photocathode from O2 at the photoanode, was investigated in terms of ionic conductivity, corrosion mitigation, and light transmission for a tandem photo-electro-chemical configuration. The designed anionic membranes, based on polysulfone polymer, contained positive fixed functionalities on the side chains of the polymeric network, particularly quaternary ammonium species counterbalanced by hydroxide anions. The membrane was first investigated in alkaline solution, KOH or NaOH at different concentrations, to optimize the ion-exchange process. Exchange in 1M KOH solution provided high conversion of the groups, a high ion-exchange capacity (IEC) value of 1.59 meq/g and a hydroxide conductivity of 25 mS/cm at 60 °C for anionic membrane. Another important characteristic, verified for hydroxide membrane, was its transparency above 600 nm, thus making it a good candidate for tandem cell applications in which the illuminated photoanode absorbs the highest-energy photons (< 600 nm), and photocathode absorbs the lowest-energy photons. Furthermore, hydrogen crossover tests showed a permeation of H2 through the membrane of less than 0.1%. Finally, low-cost tandem photo-electro-chemical cells, formed by titanium-doped hematite and ionomer at the photoanode and cupric oxide and ionomer at the photocathode, separated by a solid membrane in OH form, were assembled to optimize the influence of ionomer-loading dispersion. Maximum enthalpy (1.7%), throughput (2.9%), and Gibbs energy efficiencies (1.3%) were reached by using n-propanol/ethanol (1:1 wt.) as solvent for ionomer dispersion and with a 25 µL cm-2 ionomer loading for both the photoanode and the photocathode.

6.
Materials (Basel) ; 11(7)2018 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-30002292

RESUMEN

Co-N-C and Fe-N-C electrocatalysts have been prepared by mixing Fe or Co precursors, ethylene diamine tetra acetic acid (EDTA) as a nitrogen source, and an oxidized carbon. These materials were thermally treated at 800 °C or 1000 °C under nitrogen flow to produce four samples, named CoNC8, CoNC10, FeNC8, and FeNC10. They have been physicochemically characterized by X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM). Direct methanol fuel cell (DMFC) analyses have been carried out to investigate the performance of the nonprecious cathode catalysts, using a low amount of Pt (0.7 mg/cm²) at the anode side. It appears that FeNC8 is the best performing low-cost cathode catalyst in terms of higher oxygen reduction reaction activity and methanol tolerance.

8.
Chemistry ; 16(26): 7700-3, 2010 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-20533470
9.
Materials (Basel) ; 8(12): 7997-8008, 2015 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-28793693

RESUMEN

Next generation cathode catalysts for direct methanol fuel cells (DMFCs) must have high catalytic activity for the oxygen reduction reaction (ORR), a lower cost than benchmark Pt catalysts, and high stability and high tolerance to permeated methanol. In this study, palladium catalysts supported on titanium suboxides (Pd/TinO2n-1) were prepared by the sulphite complex route. The aim was to improve methanol tolerance and lower the cost associated with the noble metal while enhancing the stability through the use of titanium-based support; 30% Pd/Ketjenblack (Pd/KB) and 30% Pd/Vulcan (Pd/Vul) were also synthesized for comparison, using the same methodology. The catalysts were ex-situ characterized by physico-chemical analysis and investigated for the ORR to evaluate their activity, stability, and methanol tolerance properties. The Pd/KB catalyst showed the highest activity towards the ORR in perchloric acid solution. All Pd-based catalysts showed suitable tolerance to methanol poisoning, leading to higher ORR activity than a benchmark Pt/C catalyst in the presence of low methanol concentration. Among them, the Pd/TinO2n-1 catalyst showed a very promising stability compared to carbon-supported Pd samples in an accelerated degradation test of 1000 potential cycles. These results indicate good perspectives for the application of Pd/TinO2n-1 catalysts in DMFC cathodes.

10.
Chempluschem ; 80(9): 1384-1388, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31973352

RESUMEN

Carbon nanofibers are investigated as a support for Pd catalysts. The electrochemical behavior of these catalysts for both the oxygen reduction and oxygen evolution reactions is investigated in a half-cell configuration in alkaline solution (6 M KOH) at room temperature. The catalysts are compared with an internal benchmark consisting of Pd supported on Vulcan. Stress tests are also performed to assess the stability of the catalysts under the highly corrosive conditions occurring at the positive electrode, especially during oxygen evolution (high potential). Pd catalysts supported on carbon nanofibers show promising stability characteristics for applications as bifunctional oxygen catalysts in metal-air batteries.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA