Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
J Magn Reson Imaging ; 56(2): 570-578, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-34994024

RESUMEN

BACKGROUND: A three-dimensional (3D) bioprinted tissue scaffold is a promising therapeutic that goes beyond providing physical support for tissue regeneration by enabling precise spatial control over scaffold geometry and integration of different materials/cells. Critically important is in vivo confirmation of correct scaffold placement and retention during the initial 24 hours postimplantation, to detect unwanted implant migration. PURPOSE: To incorporate a safe, efficient MR contrast agent into a bioprinting workflow, and to achieve bright-contrast scaffold monitoring in vivo postimplantation. STUDY TYPE: In vitro and animal in vivo longitudinal study. ANIMAL MODEL: Two female Sprague Dawley rats (~200 g) for labeled and unlabeled scaffold implantation in the subcutaneous dorsal space flanking the vertebral column. FIELD STRENGTH/SEQUENCE: A 7.0 T/T1 -weighted spin echo (SE) sequence and T1 mapping using turbo SE with variable repetition times (TRs). ASSESSMENT: Cell viability and proliferation were assessed over 2 weeks after labeling bioprinted gelatin/alginate scaffolds with MnPNH2 (0.5 mM, 24 hours). In vitro MRI was performed 0, 12, and 24 hours postlabeling in nine labeled and three unlabeled (control) scaffolds to monitor T1 evolution. In vivo MRI was performed immediately and 24 hours postimplantation to assess T1 . Acute inflammation near surgical site was monitored in one rat to 3 days. STATISTICAL TESTS: One-way analysis of variance with Tukey-Kramer post hoc analysis (P < 0.01). RESULTS: Cell viability was unaffected by bioprinting/labeling: viability exceeded 90% in all scaffolds after 1 week. In vitro T1 's were significantly lower in labeled scaffolds compared to control (207 msec vs. 2257 msec) immediately postlabeling and 24 hours later (1227 msec vs. 2257 msec). In vivo T1 's were significantly different (243.6 msec vs. 2414.6 msec) immediately postimplantation, and no differences emerged compared to respective in vitro control/labeled counterparts. The 24-hours imaging and gross pathology confirmed migration of scaffolds beyond the imaging field. DATA CONCLUSION: We report an MR-detectable, cell-compatible bioprinted scaffold, utilizing a T1 -weighting contrast agent for high-resolution, postimplantation scaffold tracking. EVIDENCE LEVEL: 2 TECHNICAL EFFICACY: Stage 1.


Asunto(s)
Medios de Contraste , Andamios del Tejido , Animales , Femenino , Estudios Longitudinales , Imagen por Resonancia Magnética/métodos , Ratas , Ratas Sprague-Dawley
2.
Heart Fail Rev ; 25(2): 305-319, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31364028

RESUMEN

Heart failure with preserved ejection fraction (HFpEF) is an increasingly prevalent phenotype affecting over half of today's heart failure patients. With no proven therapy and no universally accepted diagnostic guideline, many HFpEF patients continue to be misdiagnosed or underdiagnosed at the early stages until the disease has progressed much further along. It is extremely difficult to diagnose the HFpEF patient, because they have a normal ejection fraction and present with non-specific symptoms such as dyspnea or exercise intolerance. To provide greater specificity, the current diagnostic criteria mandate the presence of diastolic dysfunction, where myocardial relaxation is impaired and ventricular filling pressure is elevated as a result of a hypertrophic and stiff heart. Unfortunately, diastolic dysfunction reflects late-stage structural and functional changes and offers a very narrow window, if at all, for successful intervention. In this article, we review the imaging modalities used in the current diagnostic workflow for assessing HFpEF. We also describe the most up-to-date insight into its pathophysiological basis, which attributes systemic inflammation driven by comorbidities as the initiator of disease. With this extramyocardial perspective, we provide our recommendation on new imaging targets that extend beyond the heart to enable early, accurate diagnosis of HFpEF and allow an opportunity for treating this fatal condition.


Asunto(s)
Diagnóstico por Imagen/métodos , Insuficiencia Cardíaca/diagnóstico , Ventrículos Cardíacos/diagnóstico por imagen , Volumen Sistólico/fisiología , Función Ventricular Izquierda/fisiología , Diástole , Insuficiencia Cardíaca/fisiopatología , Ventrículos Cardíacos/fisiopatología , Humanos
4.
J Magn Reson Imaging ; 44(6): 1456-1463, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27185221

RESUMEN

PURPOSE: To investigate the feasibility of high-sensitivity cellular MRI of embryonic stem (ES) cells using a novel cell permeable and cell retentive T1 contrast agent. MATERIALS AND METHODS: Mouse ES cells were labeled with a novel manganese porphyrin contrast agent, MnAMP, at 0.1 mM over 2 to 24 h and retained in contrast-free medium for up to 24 h postlabeling. MRI was performed on a 3 Tesla clinical scanner; T1 and T2 relaxation times were measured. Quantification of manganese content was performed using atomic absorption spectroscopy. Viability and proliferation assays were done for the longest labeling interval. Differentiation capacity was assessed using the hanging drop method to direct differentiation toward cardiomyocytes. RESULTS: MnAMP-labeled ES cells exhibited over a fourfold decrease in T1 compared with unlabeled cells, and maintained up to a threefold decrease 24 h postlabeling. Viability and proliferation were not affected. Most importantly, labeled ES cells differentiated into functional cardiomyocytes that exhibited normal contractility patterns. CONCLUSION: MnAMP-based cellular MRI is a very high sensitivity T1 approach for cellular imaging. It has the potential for noninvasive in vivo monitoring of stem cell therapy in cardiac regeneration and other tissue engineering and regenerative medicine applications. J. Magn. Reson. Imaging 2016;44:1456-1463.


Asunto(s)
Rastreo Celular/métodos , Células Madre Embrionarias/citología , Células Madre Embrionarias/trasplante , Imagen por Resonancia Magnética/métodos , Manganeso/química , Miocitos Cardíacos/citología , Porfirinas/química , Animales , Diferenciación Celular , Línea Celular , Medios de Contraste/química , Estudios de Factibilidad , Regeneración Tisular Dirigida/métodos , Ratones , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
5.
Front Cardiovasc Med ; 10: 1216587, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38028477

RESUMEN

Purpose: The ability to non-invasively image myocardial microvascular dilation and constriction is essential to assessing intact function and dysfunction. Yet, conventional measurements based on blood oxygenation are not specific to changes in blood volume. The purpose of this study was to extend to the heart a blood-pool MRI approach for assessing vasomodulation in the presence of blood gas changes and investigate if sex-related differences exist. Methods: Animals [five male and five female healthy Sprague Dawley rats (200-500 g)] were intubated, ventilated, and cycled through room air (normoxia) and hypercapnia (10% CO2) in 10-minute cycles after i.v. injection of blood-pool agent Ablavar (0.3 mmol/kg). Pre-contrast T1 maps and T1-weighted 3D CINE were acquired on a 3 Tesla preclinical MRI scanner, followed by repeated 3D CINE every 5 min until the end of the gas regime. Invasive laser Doppler flowmetry of myocardial perfusion was performed to corroborate MRI results. Results: Myocardial microvascular dilation to hypercapnia and constriction to normoxia were readily visualized on T1 maps. Over 10 min of hypercapnia, female myocardial T1 reduced by 20% (vasodilation), while no significant change was observed in the male myocardium. After return to normoxia, myocardial T1 increased (vasoconstriction) in both sexes (18% in females and 16% in males). Laser Doppler perfusion measurements confirmed vasomodulatory responses observed on MRI. Conclusion: Blood-pool MRI is sensitive and specific to vasomodulation in the myocardial microcirculation. Sex-related differences exist in the healthy myocardium in response to mild hypercapnic stimuli.

6.
Front Cardiovasc Med ; 9: 886687, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35665251

RESUMEN

Aim: To uncover sex-related microvascular abnormalities that underlie the early presentation of reduced perfusion in leg skeletal muscle in a type II rat model of diabetic cardiomyopathy. Methods and Results: Diabetes was induced using a non-obese, diet-based, low-dose streptozotocin model in adult female (18 diabetic, 9 control) and male rats (29 diabetic, 11 control). Time-course monitoring over 12 months following diabetes induction was performed using echocardiography, treadmill exercise, photoacoustic imaging, flow-mediated dilation (FMD), histopathology, and immunohistochemistry. Diabetic rats maintained normal weights. Hypertension appeared late in both diabetic males (7 months) and females (10 months), while only diabetic males had elevated cholesterol (7 months). On echocardiography, all diabetic animals maintained normal ejection fraction and exhibited diastolic dysfunction, mild systolic dysfunction, and a slightly enlarged left ventricle. Exercise tolerance declined progressively and early in males (4 months), later in females (8 months); FMD showed lower baseline femoral arterial flow but unchanged reactivity in both sexes (5 months); and photoacoustic imaging showed lower tissue oxygen saturation in the legs of diabetic males (4 months) and diabetic females (10 months). Myocardial perfusion was normal in both sexes. Histopathology at the final timepoint of Month 10 (males) and Month 12 (females) revealed that myocardial microvasculature was normal in both vessel density and structure, thus explaining normal perfusion on imaging. However, leg muscle microvasculature exhibited perivascular smooth muscle thickening around small arterioles in diabetic females and around large arterioles in diabetic males, explaining the depressed readings on photoacoustic and FMD. Histology also confirmed the absence of commonly reported HFpEF markers, including microvessel rarefaction, myocardial fibrosis, and left ventricular hypertrophy. Conclusion: Exercise intolerance manifesting early in the progression of diabetic cardiomyopathy can be attributed to decreased perfusion to the leg skeletal muscle due to perivascular smooth muscle thickening around small arterioles in females and large arterioles in males. This microvascular abnormality was absent in the myocardium, where perfusion levels remained normal throughout the study. We conclude that although skeletal muscle microvascular dysfunction of the vasculature presents at different levels depending on sex, it consistently presents early in both sexes prior to overt cardiac changes such as rarefaction, fibrosis, or hypertrophy.

7.
Front Cardiovasc Med ; 8: 715400, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34355034

RESUMEN

Aim: To perform a deep cardiac phenotyping of type II diabetes in a rat model, with the goal of gaining new insight into the temporality of microvascular dysfunction, cardiac dysfunction, and exercise intolerance at different stages of diabetes. Methods and Results: Diabetes was reproduced using a non-obese, diet-based, low-dose streptozotocin model in male rats (29 diabetic, 11 control). Time-course monitoring over 10 months was performed using echocardiography, treadmill exercise, photoacoustic perfusion imaging in myocardial and leg skeletal muscle, flow-mediated dilation, blood panel, and histology. Diabetic rats maintained a normal weight throughout. At early times (4 months), a non-significant reduction (30%) emerged in skeletal muscle perfusion and in exercise tolerance. At the same time, diabetic rats had a normal, slightly lower ejection fraction (63 vs. 71% control, p < 0.01), grade 1 diastolic dysfunction (E/A = 1.1 vs. 1.5, isovolumetric relaxation time = 34 vs. 27 ms; p < 0.01), mild systolic dysfunction (ejection time = 69 vs. 57 ms, isovolumetric contraction time = 21 vs. 17 ms; p < 0.01), and slightly enlarged left ventricle (8.3 vs. 7.6 mm diastole; p < 0.01). Diastolic dysfunction entered grade 3 at Month 8 (E/A = 1.7 vs. 1.3, p < 0.05). Exercise tolerance remained low in diabetic rats, with running distance declining by 60%; in contrast, control rats ran 60% farther by Month 5 (p < 0.05) and always remained above baseline. Leg muscle perfusion remained low in diabetic rats, becoming significantly lower than control by Month 10 (33% SO2 vs. 57% SO2, p < 0.01). Myocardial perfusion remained normal throughout. Femoral arterial reactivity was normal, but baseline velocity was 25% lower than control (p < 0.05). High blood pressure appeared late in diabetes (8 months). Histology confirmed absence of interstitial fibrosis, cardiomyocyte hypertrophy, or microvascular rarefaction in the diabetic heart. Rarefaction was also absent in leg skeletal muscle. Conclusion: Reduced skeletal muscle perfusion from microvascular dysfunction emerged early in diabetic rats, but myocardial perfusion remained normal throughout the study. At the same time, diabetic rats exhibited exercise intolerance and early cardiac dysfunction, in which changes related to heart failure with preserved ejection fraction (HFpEF) were seen. Importantly, skeletal muscle microvascular constriction advanced significantly before the late appearance of hypertension. HFpEF phenotypes such as cardiac hypertrophy, fibrosis, and rarefaction, which are typically associated with hypertension, were absent over the 10 month time-course of diabetes-related heart failure.

8.
Contrast Media Mol Imaging ; 2019: 3475786, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31316306

RESUMEN

Noninvasive cell tracking in vivo has the potential to advance stem cell-based therapies into the clinic. Magnetic resonance imaging (MRI) provides an excellent image-guidance platform; however, existing MR cell labeling agents are fraught with limited specificity. To address this unmet need, we developed a highly efficient manganese porphyrin contrast agent, MnEtP, using a two-step synthesis. In vitro MRI at 3 Tesla on human embryonic stem cells (hESCs) demonstrated high labeling efficiency at a very low dose of 10 µM MnEtP, resulting in a four-fold lower T 1 relaxation time. This extraordinarily low dose is ideal for labeling large cell numbers required for large animals and humans. Cell viability and differentiation capacity were unaffected. Cellular manganese quantification corroborated MRI findings, and the agent localized primarily on the cell membrane. In vivo MRI of transplanted hESCs in a rat demonstrated excellent sensitivity and specificity of MnEtP for noninvasive stem cell tracking.


Asunto(s)
Rastreo Celular/métodos , Medios de Contraste/química , Células Madre Embrionarias Humanas/citología , Imagen por Resonancia Magnética/métodos , Animales , Medios de Contraste/síntesis química , Humanos , Manganeso , Porfirinas , Ratas
9.
Sci Rep ; 8(1): 12129, 2018 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-30108285

RESUMEN

MRI for non-invasive cell tracking is recognized for enabling pre-clinical research on stem cell therapy. Yet, adoption of cellular imaging in stem cell research has been restricted to sites with experience in MR contrast agent synthesis and to small animal models that do not require scaled-up synthesis. In this study, we demonstrate the use of a gadolinium-free T1 contrast agent for tracking human embryonic stem cells. The agent, MnPNH2, is an easily synthesized manganese porphyrin that can be scaled for large cell numbers. MRI was performed on a 3 T clinical scanner. Cell pellets labeled at different MnPNH2 concentrations for 24 hours demonstrated a decrease in T1 relaxation time of nearly two-fold (P < 0.05), and cellular contrast was maintained for 24 hours (P < 0.05). Cell viability (Trypan blue) and differentiation (embryoid body formation) were unaffected. Cell uptake of Mn on inductively coupled plasma atomic emission spectroscopy corroborated MRI findings, and fluorescence microscopy revealed the agent localized mainly in cell-cell boundaries and cell nuclei. Labeled cells transplanted in rats demonstrated the superior sensitivity of MnPNH2 for in-vivo cell tracking.


Asunto(s)
Rastreo Celular/métodos , Medios de Contraste/administración & dosificación , Células Madre Embrionarias Humanas/trasplante , Imagen por Resonancia Magnética/métodos , Animales , Técnicas de Cultivo de Célula , Diferenciación Celular , Núcleo Celular/química , Supervivencia Celular , Medios de Contraste/síntesis química , Femenino , Células Madre Embrionarias Humanas/química , Humanos , Microscopía Intravital/métodos , Manganeso/química , Microscopía Fluorescente , Modelos Animales , Porfirinas/química , Ratas , Ratas Sprague-Dawley , Sensibilidad y Especificidad , Espectrofotometría Atómica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA