Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
J Virol ; 93(24)2019 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-31578288

RESUMEN

Coronaviruses (CoVs) have emerged from animal reservoirs to cause severe and lethal disease in humans, but there are currently no FDA-approved antivirals to treat the infections. One class of antiviral compounds, nucleoside analogues, mimics naturally occurring nucleosides to inhibit viral replication. While these compounds have been successful therapeutics for several viral infections, mutagenic nucleoside analogues, such as ribavirin and 5-fluorouracil, have been ineffective at inhibiting CoVs. This has been attributed to the proofreading activity of the viral 3'-5' exoribonuclease (ExoN). ß-d-N4-Hydroxycytidine (NHC) (EIDD-1931; Emory Institute for Drug Development) has recently been reported to inhibit multiple viruses. Here, we demonstrate that NHC inhibits both murine hepatitis virus (MHV) (50% effective concentration [EC50] = 0.17 µM) and Middle East respiratory syndrome CoV (MERS-CoV) (EC50 = 0.56 µM) with minimal cytotoxicity. NHC inhibited MHV lacking ExoN proofreading activity similarly to wild-type (WT) MHV, suggesting an ability to evade or overcome ExoN activity. NHC inhibited MHV only when added early during infection, decreased viral specific infectivity, and increased the number and proportion of G:A and C:U transition mutations present after a single infection. Low-level NHC resistance was difficult to achieve and was associated with multiple transition mutations across the genome in both MHV and MERS-CoV. These results point to a virus-mutagenic mechanism of NHC inhibition in CoVs and indicate a high genetic barrier to NHC resistance. Together, the data support further development of NHC for treatment of CoVs and suggest a novel mechanism of NHC interaction with the CoV replication complex that may shed light on critical aspects of replication.IMPORTANCE The emergence of coronaviruses (CoVs) into human populations from animal reservoirs has demonstrated their epidemic capability, pandemic potential, and ability to cause severe disease. However, no antivirals have been approved to treat these infections. Here, we demonstrate the potent antiviral activity of a broad-spectrum ribonucleoside analogue, ß-d-N4-hydroxycytidine (NHC), against two divergent CoVs. Viral proofreading activity does not markedly impact sensitivity to NHC inhibition, suggesting a novel interaction between a nucleoside analogue inhibitor and the CoV replicase. Further, passage in the presence of NHC generates only low-level resistance, likely due to the accumulation of multiple potentially deleterious transition mutations. Together, these data support a mutagenic mechanism of inhibition by NHC and further support the development of NHC for treatment of CoV infections.


Asunto(s)
Antivirales/farmacología , Citidina/análogos & derivados , Coronavirus del Síndrome Respiratorio de Oriente Medio/efectos de los fármacos , Coronavirus del Síndrome Respiratorio de Oriente Medio/genética , Virus de la Hepatitis Murina/efectos de los fármacos , Virus de la Hepatitis Murina/genética , Animales , Línea Celular , Línea Celular Tumoral , Chlorocebus aethiops , Infecciones por Coronaviridae/tratamiento farmacológico , Infecciones por Coronaviridae/virología , Infecciones por Coronavirus/tratamiento farmacológico , Infecciones por Coronavirus/virología , Citidina/farmacología , Farmacorresistencia Viral , Exorribonucleasas/metabolismo , Ratones , Coronavirus del Síndrome Respiratorio de Oriente Medio/metabolismo , Virus de la Hepatitis Murina/metabolismo , Mutagénesis , ARN Polimerasa Dependiente del ARN/metabolismo , Células Vero , Proteínas no Estructurales Virales/metabolismo , Replicación Viral/efectos de los fármacos
2.
J Virol ; 92(3)2018 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-29167335

RESUMEN

Venezuelan equine encephalitis virus (VEEV) is a representative member of the New World alphaviruses. It is transmitted by mosquito vectors and causes highly debilitating disease in humans, equids, and other vertebrate hosts. Despite a continuous public health threat, very few compounds with anti-VEEV activity in cell culture and in mouse models have been identified to date, and rapid development of virus resistance to some of them has been recorded. In this study, we investigated the possibility of using a modified nucleoside analog, ß-d-N4-hydroxycytidine (NHC), as an anti-VEEV agent and defined the mechanism of its anti-VEEV activity. The results demonstrate that NHC is a very potent antiviral agent. It affects both the release of genome RNA-containing VEE virions and their infectivity. Both of these antiviral activities are determined by the NHC-induced accumulation of mutations in virus-specific RNAs. The antiviral effect is most prominent when NHC is applied early in the infectious process, during the amplification of negative- and positive-strand RNAs in infected cells. Most importantly, only a low-level resistance of VEEV to NHC can be developed, and it requires acquisition and cooperative function of more than one mutation in nsP4. These adaptive mutations are closely located in the same segment of nsP4. Our data suggest that NHC is more potent than ribavirin as an anti-VEEV agent and likely can be used to treat other alphavirus infections.IMPORTANCE Venezuelan equine encephalitis virus (VEEV) can cause widespread epidemics among humans and domestic animals. VEEV infections result in severe meningoencephalitis and long-term sequelae. No approved therapeutics exist for treatment of VEEV infections. Our study demonstrates that ß-d-N4-hydroxycytidine (NHC) is a very potent anti-VEEV compound, with the 50% effective concentration being below 1 µM. The mechanism of NHC antiviral activity is based on induction of high mutation rates in the viral genome. Accordingly, NHC treatment affects both the rates of particle release and the particle infectivity. Most importantly, in contrast to most of the anti-alphavirus drugs that are under development, resistance of VEEV to NHC develops very inefficiently. Even low levels of resistance require acquisition of multiple mutations in the gene of the VEEV-specific RNA-dependent RNA polymerase nsP4.


Asunto(s)
Alphavirus/patogenicidad , Antivirales/farmacología , Citidina/análogos & derivados , Mutación , Alphavirus/efectos de los fármacos , Alphavirus/genética , Animales , Línea Celular , Chlorocebus aethiops , Cricetinae , Citidina/farmacología , Genoma Viral/efectos de los fármacos , Humanos , Ribavirina/farmacología , Células Vero , Carga Viral , Proteínas no Estructurales Virales/genética
3.
Artículo en Inglés | MEDLINE | ID: mdl-29891600

RESUMEN

Morbidity and mortality resulting from influenza-like disease are a threat, especially for older adults. To improve case management, next-generation broad-spectrum antiviral therapeutics that are efficacious against major drivers of influenza-like disease, including influenza viruses and respiratory syncytial virus (RSV), are urgently needed. Using a dual-pathogen high-throughput screening protocol for influenza A virus (IAV) and RSV inhibitors, we have identified N4-hydroxycytidine (NHC) as a potent inhibitor of RSV, influenza B viruses, and IAVs of human, avian, and swine origins. Biochemical in vitro polymerase assays and viral RNA sequencing revealed that the ribonucleotide analog is incorporated into nascent viral RNAs in place of cytidine, increasing the frequency of viral mutagenesis. Viral passaging in cell culture in the presence of an inhibitor did not induce robust resistance. Pharmacokinetic profiling demonstrated dose-dependent oral bioavailability of 36 to 56%, sustained levels of the active 5'-triphosphate anabolite in primary human airway cells and mouse lung tissue, and good tolerability after extended dosing at 800 mg/kg of body weight/day. The compound was orally efficacious against RSV and both seasonal and highly pathogenic avian IAVs in mouse models, reducing lung virus loads and alleviating disease biomarkers. Oral dosing reduced IAV burdens in a guinea pig transmission model and suppressed virus spread to uninfected contact animals through direct transmission. Based on its broad-spectrum efficacy and pharmacokinetic properties, NHC is a promising candidate for future clinical development as a treatment option for influenza-like diseases.


Asunto(s)
Antivirales/farmacología , Virus Sincitial Respiratorio Humano/efectos de los fármacos , Animales , Células Cultivadas , Cobayas , Humanos , Virus de la Influenza A/efectos de los fármacos , Virus de la Influenza A/genética , Virus de la Influenza B/efectos de los fármacos , Virus de la Influenza B/genética , Ratones , ARN Viral/genética , Virus Sincitial Respiratorio Humano/genética , Virus Sincitiales Respiratorios/efectos de los fármacos , Virus Sincitiales Respiratorios/genética
4.
Beilstein J Org Chem ; 9: 197-203, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23400228

RESUMEN

High-throughput screening (HTS) previously identified benzimidazole 1 (JMN3-003) as a compound with broad antiviral activity against different influenza viruses and paramyxovirus strains. In pursuit of a lead compound from this series for development, we sought to increase both the potency and the aqueous solubility of 1. Lead optimization has achieved compounds with potent antiviral activity against a panel of myxovirus family members (EC(50) values in the low nanomolar range) and much improved aqueous solubilities relative to that of 1. Additionally, we have devised a robust synthetic strategy for preparing 1 and congeners in an enantio-enriched fashion, which has allowed us to demonstrate that the (S)-enantiomers are generally 7- to 110-fold more potent than the corresponding (R)-isomers.

5.
Antiviral Res ; 171: 104597, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31494195

RESUMEN

The New World alphaviruses Venezuelan, Eastern, and Western equine encephalitis viruses (VEEV, EEEV and WEEV, respectively) commonly cause a febrile disease that can progress to meningoencephalitis, resulting in significant morbidity and mortality. To address the need for a therapeutic agent for the treatment of Alphavirus infections, we identified and pursued preclinical characterization of a ribonucleoside analog EIDD-1931 (ß-D-N4-hydroxycytidine, NHC), which has shown broad activity against alphaviruses in vitro and has a very high genetic barrier for development of resistance. To be truly effective as a therapeutic agent for VEEV infection a drug must penetrate the blood brain barrier and arrest virus replication in the brain. High plasma levels of EIDD-1931 are rapidly achieved in mice after oral dosing. Once in the plasma EIDD-1931 is efficiently distributed into organs, including brain, where it is rapidly converted to its active 5'-triphosphate. EIDD-1931 showed a good safety profile in mice after 7-day repeated dosing with up to 1000 mg/kg/day doses. In mouse model studies, EIDD-1931 was 90-100% effective in protecting mice against lethal intranasal infection when therapeutic treatment was started as late as 24 h post-infection, and partial protection was achieved when treatment was delayed for 48 h post-infection. These results support further preclinical development of EIDD-1931 as a potential anti-alphavirus drug.


Asunto(s)
Antivirales/farmacología , Virus de la Encefalitis Equina Venezolana/efectos de los fármacos , Encefalomielitis Equina Venezolana/virología , Ribonucleósidos/farmacología , Administración Oral , Animales , Antivirales/administración & dosificación , Antivirales/química , Antivirales/farmacocinética , Línea Celular , Cromatografía Liquida , Modelos Animales de Enfermedad , Encefalomielitis Equina Venezolana/tratamiento farmacológico , Caballos , Ratones , Estructura Molecular , Ribonucleósidos/administración & dosificación , Ribonucleósidos/química , Ribonucleósidos/farmacocinética , Espectrometría de Masas en Tándem , Distribución Tisular , Replicación Viral/efectos de los fármacos
6.
ACS Med Chem Lett ; 3(5): 362-6, 2012 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-24900479

RESUMEN

After more than 30 years of research and 30 failed clinical trials with as many different treatments, progesterone is the first agent to demonstrate robust clinical efficacy as a treatment for traumatic brain injuries. It is currently being investigated in two, independent phase III clinical trials in hospital settings; however, it presents a formidable solubility challenge that has so far prevented the identification of a formulation that would be suitable for emergency field response use or battlefield situations. Accordingly, we have designed and tested a novel series of water-soluble analogues that address this critical need. We report here the synthesis of C-20 oxime conjugates of progesterone as therapeutic agents for traumatic brain injuries with comparable efficacy in animal models of traumatic brain injury and improved solubility and pharmacokinetic profiles. Pharmacodynamic analysis reveals that a nonprogesterone steroidal analogue may be primarily responsible for the observed activity.

7.
J Am Chem Soc ; 128(18): 6075-88, 2006 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-16669677

RESUMEN

Three phenols with pendant, hydrogen-bonded bases (HOAr-B) have been oxidized in MeCN with various one-electron oxidants. The bases are a primary amine (-CPh(2)NH(2)), an imidazole, and a pyridine. The product of chemical and quasi-reversible electrochemical oxidations in each case is the phenoxyl radical in which the phenolic proton has transferred to the base, (*)OAr-BH(+), a proton-coupled electron transfer (PCET) process. The redox potentials for these oxidations are lower than for other phenols, predominately from the driving force for proton movement. One-electron oxidation of the phenols occurs by a concerted proton-electron transfer (CPET) mechanism, based on thermochemical arguments, isotope effects, and DeltaDeltaG(++)/DeltaDeltaG degrees . The data rule out stepwise paths involving initial electron transfer to form the phenol radical cations [(*)(+)HOAr-B] or initial proton transfer to give the zwitterions [(-)OAr-BH(+)]. The rate constant for heterogeneous electron transfer from HOAr-NH(2) to a platinum electrode has been derived from electrochemical measurements. For oxidations of HOAr-NH(2), the dependence of the solution rate constants on driving force, on temperature, and on the nature of the oxidant, and the correspondence between the homogeneous and heterogeneous rate constants, are all consistent with the application of adiabatic Marcus theory. The CPET reorganization energies, lambda = 23-56 kcal mol(-)(1), are large in comparison with those for electron transfer reactions of aromatic compounds. The reactions are not highly non-adiabatic, based on minimum values of H(rp) derived from the temperature dependence of the rate constants. These are among the first detailed analyses of CPET reactions where the proton and electron move to different sites.


Asunto(s)
Fenoles/química , Cristalografía por Rayos X , Electrones , Enlace de Hidrógeno , Cinética , Modelos Químicos , Oxidación-Reducción , Potenciometría , Protones , Espectrofotometría Ultravioleta , Termodinámica
8.
J Am Chem Soc ; 124(34): 10112-23, 2002 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-12188675

RESUMEN

Described here are oxidations of alkylaromatic compounds by dimanganese mu-oxo and mu-hydroxo dimers [(phen)(2)Mn(IV)(mu-O)(2)Mn(IV)(phen)(2)](4+) ([Mn(2)(O)(2)](4+)), [(phen)(2)Mn(IV)(mu-O)(2)Mn(III)(phen)(2)](3+) ([Mn(2)(O)(2)](3+)), and [(phen)(2)Mn(III)(mu-O)(mu-OH)Mn(III)(phen)(2)](3+) ([Mn(2)(O)(OH)](3+)). Dihydroanthracene, xanthene, and fluorene are oxidized by [Mn(2)(O)(2)](3+) to give anthracene, bixanthenyl, and bifluorenyl, respectively. The manganese product is the bis(hydroxide) dimer, [(phen)(2)Mn(III)(mu-OH)(2)Mn(II)(phen)(2)](3+) ([Mn(2)(OH)(2)](3+)). Global analysis of the UV/vis spectral kinetic data shows a consecutive reaction with buildup and decay of [Mn(2)(O)(OH)](3+) as an intermediate. The kinetics and products indicate a mechanism of hydrogen atom transfers from the substrates to oxo groups of [Mn(2)(O)(2)](3+) and [Mn(2)(O)(OH)](3+). [Mn(2)(O)(2)](4+) is a much stronger oxidant, converting toluene to tolyl-phenylmethanes and naphthalene to binaphthyl. Kinetic and mechanistic data indicate a mechanism of initial preequilibrium electron transfer for p-methoxytoluene and naphthalenes because, for instance, the reactions are inhibited by addition of [Mn(2)(O)(2)](3+). The oxidation of toluene by [Mn(2)(O)(2)](4+), however, is not inhibited by [Mn(2)(O)(2)](3+). Oxidation of a mixture of C(6)H(5)CH(3) and C(6)H(5)CD(3) shows a kinetic isotope effect of 4.3 +/- 0.8, consistent with C-H bond cleavage in the rate-determining step. The data indicate a mechanism of initial hydride transfer from toluene to [Mn(2)(O)(2)](4+). Thus, oxidations by manganese oxo dimers occur by three different mechanisms: hydrogen atom transfer, electron transfer, and hydride transfer. The thermodynamics of e(-), H(*), and H(-) transfers have been determined from redox potential and pK(a) measurements. For a particular oxidant and a particular substrate, the choice of mechanism is influenced both by the thermochemistry and by the intrinsic barriers. Rate constants for hydrogen atom abstraction by [Mn(2)(O)(2)](3+) and [Mn(2)(O)(OH)](3+) are consistent with their 79 and 75 kcal mol(-)(1) affinities for H(*). In the oxidation of p-methoxytoluene by [Mn(2)(O)(2)](4+), hydride transfer is thermochemically 24 kcal mol(-)(1) more facile than electron transfer; yet the latter mechanism is preferred. Thus, electron transfer has a substantially smaller intrinsic barrier than does hydride transfer in this system.


Asunto(s)
Hidrocarburos Aromáticos/química , Manganeso/química , Compuestos Organometálicos/química , Oxidantes/química , Antracenos/química , Cristalografía por Rayos X , Electroquímica , Electrones , Fluorenos/química , Hidrógeno/química , Cinética , Compuestos de Manganeso/química , Estructura Molecular , Oxidación-Reducción , Óxidos/química , Polisacáridos Bacterianos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA