RESUMEN
Deleterious variants in collagen genes are the most common cause of hereditary connective tissue disorders (HCTD). Adaptations of the American College of Medical Genetics and Genomics/Association for Molecular Pathology (ACMG/AMP) criteria are still lacking. A multidisciplinary team was set up for developing specifications of the ACMG/AMP criteria for COL1A1, COL1A2, COL2A1, COL3A1, COL5A1, COL5A2, COL11A1, COL11A2 and COL12A1, associated with various forms of HCTD featuring joint hypermobility, which is becoming one of the most common reasons of referral for molecular testing in this field. Such specifications were validated against 209 variants, and resulted effective for classifying as pathogenic and likely pathogenic null alleles without downgrading of the PVS1 level of strength and recurrent Glycine substitutions. Adaptations of selected criteria reduced uncertainties on private Glycine substitutions, intronic variants predicted to affect the splicing, and null alleles with a downgraded PVS1 level of strength. Segregation and multigene panel sequencing data mitigated uncertainties on non-Glycine substitutions by the attribution of one or more benignity criteria. These specifications may improve the clinical utility of molecular testing in HCTD by reducing the number of variants with neutral/conflicting interpretations. Close interactions between laboratory and clinicians are crucial to estimate the a priori utility of molecular test and to improve medical reports.
Asunto(s)
Variación Genética , Inestabilidad de la Articulación , Humanos , Estados Unidos , Pruebas Genéticas/métodos , Inestabilidad de la Articulación/diagnóstico , Inestabilidad de la Articulación/genética , Análisis de Secuencia de ADN/métodosRESUMEN
The genetic background of congenital heart diseases (CHDs) is extremely complex, heterogenous, and still majorly to be determined. CHDs can be sporadic or familial. In this article we discuss in detail the phenotypic spectrum of selected genes including MYH7, GATA4, NKX2-5, TBX5, and TBX20. Our goal is to offer the clinician a general overview of the clinical spectrum of the analyzed topics that are traditionally known as causative for CHDs but we underline in this review the possible progressive functional (cardiomyopathy) and electric aspects (arrhythmias) caused by the genetic background.
Asunto(s)
Cardiomiopatías , Cardiopatías Congénitas , Factor de Transcripción GATA4 , Cardiopatías Congénitas/genética , Humanos , Morfogénesis/genética , MiocardioRESUMEN
BACKGROUND: Creatine kinase (Ck) catalyzes the reversible transfer of high-energy phosphate groups between adenosine triphosphate and phosphocreatine. The brain isoform (Ckbb) is greatly induced in mature osteoclasts, playing an important role in bone-resorbing function during osteoclastogenesis. High Ckbb serum level has been found in patients with osteopetrosis and in patients with bisphosphonate (BP)-induced osteopetrosis. BPs are considered the treatment of choice for children with osteogenesis imperfecta (OI), acting as potent inhibitors of bone resorption by suppressing the activity of osteoclasts. METHODS: We determined total serum Ck and isoform activity in 18 prepubertal children with type I OI, before and during treatment with the BP neridronate infusions. RESULTS: Basal serum Ckbb levels were slightly elevated with respect to controls (mean ± SD = 3.0 ± 2.7 vs. 2.0 ± 2.2) and progressively increased after neridronate treatment (t0 vs. t4: mean ± SD = 3.0 ± 2.7 to 10.8 ± 8.1), with significant increment after first, second, and fourth infusions (P < 0.01). An inverse correlation was found between serum Ckbb and serum CTx at basal level. CONCLUSION: Our results support previous observations that increased serum Ckbb reflects failure of osteoclasts or, at least, suppression of osteoclasts. Upon considering that BPs are long acting, this information could be useful to prevent the risk of overtreatment after long-term BP exposure in pediatric patients with OI.
Asunto(s)
Forma BB de la Creatina-Quinasa/sangre , Difosfonatos/uso terapéutico , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Osteogénesis Imperfecta/sangre , Osteogénesis Imperfecta/tratamiento farmacológico , Resorción Ósea , Niño , Preescolar , Densitometría , Femenino , Humanos , Infusiones Intravenosas , Masculino , Osteoclastos/metabolismo , RiesgoRESUMEN
Ehlers-Danlos syndromes are a heterogeneous group of Heritable Connective Tissue Disorders characterized by joint hypermobility, skin hyperextensibility, and tissue fragility. Among the different types, the hypermobile Ehlers-Danlos syndrome is the most frequent and includes generalized joint hypermobility as the major diagnostic criterion. Joint hypermobility in hypermobile Ehlers-Danlos syndrome is often associated with pain that does not always allow the use of effective pain-reducing treatments. Patients with hEDS constantly describe their pain in detail. Eighty-nine patients with hEDS diagnoses were recruited and evaluated. They were asked to describe their pain in writing. The texts were examined through Linguistic Inquiry and Word Count. Correlational analyses were conducted between pain perception and language. A comparison of high/low pain perception and the quality of metaphors was carried out. The results showed that language quality varies depending on how much pain is perceived. The greater the pain is perceived, the lesser the positive effects and the greater the negative effects and dehumanizing metaphors are being used. Moreover, a greater pain seems to be related to a verbal experience of greater isolation and less self-care. In conclusion, the use of metaphors is a useful tool for examining illness experience and may help clinicians in the rehabilitation program.
RESUMEN
Osteogenesis imperfecta (OI) is a rare hereditary disease caused by mutations in genes coding for type I collagen, resulting in bone fragility. In literature are described forms lethal in perinatal period, forms which are moderate and slight forms where the only sign of disease is osteopenia. Child abuse is an important social and medical problem. Fractures are the second most common presentation after skin lesions and may present specific patterns.The differential diagnosis between slight-moderate forms of OI and child abuse could be very challenging especially when other signs typical of abuse are absent, since both could present with multiple fractures without reasonable explanations. We report a 20 months-old female with a history of 4 fractures occurred between the age of three and eighteen months, brought to authorities' attention as a suspected child abuse.However when she came to our department physical examination, biochemical tests, total body X-ray and a molecular analysis of DNA led the diagnosis of OI.Thus, a treatment with bisphosphonate and a physical rehabilitation process, according to Vojta method, were started with improvement in bony mineralization, gross motor skills and absence of new fracture.In conclusion our case demonstrates how in any child presenting fractures efforts should be made to consider, besides child abuse, all the other hypothesis even the rarest as OI.
RESUMEN
In 2018, a new clinical subtype, caused by biallelic variants in the AEBP1 gene, encoding the ACLP protein, was added to the current nosological classification of the Ehlers-Danlos Syndromes (EDS). This new phenotype, provisionally termed EDS classical-like type 2 (clEDS2), has not yet been fully characterized, as only nine cases have been reported to date. Here we describe a patient, homozygous for a novel AEBP1 pathogenic variant (NM_001129.5 c.2123_2124delTG (p.Val708AlafsTer5)), whose phenotype is reminiscent of classical EDS but also includes previously unreported multiple congenital malformations. Furthermore, we briefly summarize the current principal clinical manifestations of clEDS2 and the molecular evidence surrounding the role of AEBP1 in the context of extracellular matrix homeostasis and connective tissue development. Although a different coexisting etiology for the multiple congenital malformations of our patient cannot be formally excluded, the emerging role of ACLP in TGF-ß and WNT pathways may explain their occurrence and the phenotypical variability of clEDS2.
Asunto(s)
Síndrome de Ehlers-Danlos , Humanos , Mutación , Síndrome de Ehlers-Danlos/patología , Matriz Extracelular/genética , Fenotipo , Homocigoto , Carboxipeptidasas/genética , Proteínas Represoras/genéticaRESUMEN
Filamin C is a protein specifically expressed in myocytes and cardiomyocytes and is involved in several biological functions, including sarcomere contractile activity, signaling, cellular adhesion, and repair. FLNC variants are associated with different disorders ranging from striated muscle (myofibrillar distal or proximal) myopathy to cardiomyopathies (CMPs) (restrictive, hypertrophic, and dilated), or both. The outcome depends on functional consequences of the detected variants, which result either in FLNC haploinsufficiency or in an aberrant protein, the latter affecting sarcomere structure leading to protein aggregates. Cardiac manifestations of filaminopathies are most often described as adult onset CMPs and limited reports are available in children or on other cardiac spectrums (congenital heart defects-CHDs, or arrhythmias). Here we report on 13 variants in 14 children (2.8%) out of 500 pediatric patients with early-onset different cardiac features ranging from CMP to arrhythmias and CHDs. In one patient, we identified a deletion encompassing FLNC detected by microarray, which was overlooked by next generation sequencing. We established a potential genotype-phenotype correlation of the p.Ala1186Val variant in severe and early-onset restrictive cardiomyopathy (RCM) associated with a limb-girdle defect (two new patients in addition to the five reported in the literature). Moreover, in three patients (21%), we identified a relatively frequent finding of long QT syndrome (LQTS) associated with RCM (n = 2) and a hypertrabeculated left ventricle (n = 1). RCM and LQTS in children might represent a specific red flag for FLNC variants. Further studies are warranted in pediatric cohorts to delineate potential expanding phenotypes related to FLNC.
RESUMEN
Cardiomyopathy (CMP) is a rare disease in the pediatric population, with a high risk of morbidity and mortality. The genetic etiology of CMPs in children is extremely heterogenous. These two factors play a major role in the difficulties of establishing standard diagnostic and therapeutic protocols. Isolated CMP in children is a frequent finding, mainly caused by sarcomeric gene variants with a detection rate that can reach up to 50% of analyzed cohorts. Complex multisystemic forms of pediatric CMP are even more heterogenous. Few studies in literature take into consideration this topic as the main core since it represents a rarity (systemic CMP) within a rarity (pediatric population CMP). Identifying etiology in this cohort is essential for understanding prognosis, risk stratification, eligibility to heart transplantation and/or mechanical-assisted procedures, preventing multiorgan complications, and relatives' recurrence risk calculation. The previous points represent a cornerstone in patients' empowerment and personalized medical care approach. The aim of this work is to propose a new approach for an algorithm in the setting of the diagnostic framework of systemic pediatric CMP. On the other hand, during the literature review, we noticed a relatively common etiologic pattern in some forms of complex/multisystem CMP. In other words, certain syndromes such as Danon, Vici, Alström, Barth, and Myhre syndrome share a common pathway of directly or indirectly defective "autophagy" process, which appears to be a possible initiating/triggering factor for CMPs. This conjoint aspect could be important for possible prognostic/therapeutic implications in this category of patients. However, multicentric studies detailed functional and experimental models are needed prior to deriving conclusions.
RESUMEN
Neuromuscular disorders (NMDs) are highly heterogenous from both an etiological and clinical point of view. Their signs and symptoms are often multisystemic, with frequent cardiac involvement. In fact, childhood onset forms can predispose a person to various progressive cardiac abnormalities including cardiomyopathies (CMPs), valvulopathies, atrioventricular conduction defects (AVCD), supraventricular tachycardia (SVT) and ventricular arrhythmias (VA). In this review, we selected and described five specific NMDs: Friedreich's Ataxia (FRDA), congenital and childhood forms of Myotonic Dystrophy type 1 (DM1), Kearns Sayre Syndrome (KSS), Ryanodine receptor type 1-related myopathies (RYR1-RM) and Laminopathies. These changes are widely investigated in adults but less researched in children. We focused on these specific topics due their relative frequency and their potential unexpected cardiac manifestations in children. Moreover these conditions present different inheritance patterns and mechanisms of action. We decided not to discuss Duchenne and Becker muscular dystrophies due to extensive work regarding the cardiac aspects in children. For each described NMD, we focused on the possible cardiac manifestations such as different types of CMPs (dilated-DCM, hypertrophic-HCM, restrictive-RCM or left ventricular non compaction-LVNC), structural heart abnormalities (including valvulopathies), and progressive heart rhythm changes (AVCD, SVT, VA). We describe the current management strategies for these conditions. We underline the importance, especially for children, of a serial multidisciplinary personalized approach and the need for periodic surveillance by a dedicated heart team. This is largely due to the fact that in children, the diagnosis of certain NMDs might be overlooked and the cardiac aspect can provide signs of their presence even prior to overt neurological diagnosis.
Asunto(s)
Enfermedades Neuromusculares , Cardiomiopatías , Niño , Humanos , MiocardioRESUMEN
BACKGROUND: Monosomy 1p36 syndrome is now considered the most common terminal deletion syndrome, with an estimated incidence of 1 in 5000. Cardiac involvement is well described in the literature mainly in terms of congenital heart defects (CHDs) and cardiomyopathies (CMPs). Few data in the literature describe the potential progressive nature of aortic dilatation (root and ascending aorta) in 1p36 deletion syndrome. SKI harboured in the deleted region might play a predisposing factor for this aspect. METHODS: we reviewed the aortic aspect both in the literature and in our cohort, where major attention to the aortic abnormalities was given through dedicated echocardiographic measurements even in previously screened individuals. RESULTS: aortic involvement in 1p36 deletion syndrome was described in the literature three times within the CHD context. We observed three additional patients from our cohort (three out of nine patients) with aortic dilatation. All patients with dilated aorta had SKI haploinsufficiency within the deleted region. CONCLUSIONS: at long-term outcome and with a growing population of this rare disease, this association (1p36 deletion and aortic dilatation) might represent a major concern especially in terms of risk stratification and the potential need for specific management (conservative pharmacologic and eventually surgical) whenever indicated. The present study suggests the need for detailed multicentric studies and indication to periodic echocardiographic screening in addition to baseline tests, especially in individuals with deletions harbouring SKI.
RESUMEN
Idiopathic scoliosis is the most common form of spinal deformity in children. However, secondary causes of scoliosis, such as ganglioneuroma, should be always considered to avoid wrong diagnosis, and further investigations are required when there are atypical signs. We report a case of ganglioneuroma misdiagnosed as idiopathic scoliosis and review the literature to identify the red flags useful for physicians during the evaluation of a child with scoliosis. On the basis of both clinical and radiographic criteria that emerged from this study, we propose an algorithm that could help in the differential diagnosis, suggesting when to perform an MRI.
Asunto(s)
Ganglioneuroma/complicaciones , Neoplasias del Mediastino/complicaciones , Escoliosis/etiología , Algoritmos , Niño , Árboles de Decisión , Errores Diagnósticos , Femenino , Ganglioneuroma/diagnóstico , Ganglioneuroma/cirugía , Humanos , Neoplasias del Mediastino/diagnóstico , Neoplasias del Mediastino/cirugía , Escoliosis/diagnósticoRESUMEN
Cardiovascular involvement is relatively rare in osteogenesis imperfecta and has a predilection for left-sided cardiac valves. We report a 5 years old female child affected by osteogenesis imperfecta type I in which an asymptomatic mild form of Ebstein's anomaly, a congenital tricuspid malformation, was diagnosed during routinely investigation. The association of these two relatively rare entities could provide new insight to better understand the pathogenesis of cardiac involvement in osteogenesis imperfecta.