RESUMEN
There is compelling evidence that autoreactive CD8(+)T cells play a central role in precipitating the development of autoimmune diabetes in non-obese diabetic (NOD) mice, but the underlying mechanisms remain unclear. Given that ITGAE (CD103) recognizes an islet-restricted ligand (E-cadherin), we postulated that its expression is required for initiation of disease. We herein use a mouse model of autoimmune diabetes (NOD/ShiLt mice) to test this hypothesis. We demonstrate that ITGAE is expressed by a discrete subset of CD8(+)T cells that infiltrate pancreatic islets before the development of diabetes. Moreover, we demonstrate that development of diabetes in Itgae-deficient NOD mice is significantly delayed at early but not late time points, indicating that ITGAE is preferentially involved in early diabetes development. To rule out a potential contribution by closely linked loci to this delay, we treated WT NOD mice beginning at 2 weeks of age through 5 weeks of age with a depleting anti-ITGAE mAb and found a decreased incidence of diabetes following anti-ITGAE mAb treatment compared with mice that received isotype control mAbs or non-depleting mAbs to ITGAE. Moreover, a histological examination of the pancreas of treated mice revealed that NOD mice treated with a depleting mAb were resistant to immune destruction. These results indicate that ITGAE(+) cells play a key role in the development of autoimmune diabetes and are consistent with the hypothesis that ITGAE(+)CD8(+)T effectors initiate the disease process.
Asunto(s)
Antígenos CD/fisiología , Diabetes Mellitus Tipo 1/genética , Cadenas alfa de Integrinas/fisiología , Animales , Animales Recién Nacidos , Anticuerpos Monoclonales/uso terapéutico , Linfocitos T CD8-positivos/metabolismo , Diabetes Mellitus Tipo 1/inmunología , Diabetes Mellitus Tipo 1/terapia , Progresión de la Enfermedad , Femenino , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos NOD , Ratones Noqueados , Páncreas/inmunología , Páncreas/metabolismoRESUMEN
Image sequences of live proliferating cells often contain visual ambiguities that are difficult even for human domain experts to resolve. Here we present a new approach to analyzing image sequences that capture the development of clones of hematopoietic stem cells (HSCs) from live cell time lapse microscopy. The HSCs cannot survive long term imaging unless they are cultured together with a secondary cell type, OP9 stromal cells. The HSCs frequently disappear under the OP9 cell layer, making segmentation difficult or impossible from a single image frame, even for a human domain expert. We have developed a new approach to the segmentation of HSCs that captures these occluded cells. Starting with an a priori segmentation that uses a Monte Carlo technique to estimate the number of cells in a clump of touching cells, we proceed to track and lineage the image data. Following user validation of the lineage information, an a posteriori resegmentation step utilizing tracking results delineates the HSCs occluded by the OP9 layer. Resegmentation has been applied to 3031 occluded segmentations from 77 tracks, correctly recovering over 84% of the occluded segmentations.