Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Genes Cancer ; 9(3-4): 101-113, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30108681

RESUMEN

We recently reported that adenovirus E1A enhances MYC association with the NuA4/Tip60 histone acetyltransferase (HAT) complex to activate a panel of genes enriched for DNA replication and cell cycle. Genes from this panel are highly expressed in examined cancer cell lines when compared to normal fibroblasts. To further understand gene regulation in cancer by MYC and the NuA4 complex, we performed RNA-seq analysis of MD-MB231 breast cancer cells following knockdown of MYC or Tip60 - the HAT enzyme of the NuA4 complex. We identify here a panel of 424 genes, referred to as MYC-Tip60 co-regulated panel (MTcoR), that are dependent on both MYC and Tip60 for expression and likely co-regulated by MYC and the NuA4 complex. The MTcoR panel is most significantly enriched in genes involved in cell cycle and/or DNA replication. In contrast, genes repressed by shMYC but not by shTip60 (224 genes) have a low significance of enrichment in identifiable biological processes other than cell cycle and DNA replication. Genes repressed by shTip60 but not by shMYC (102 genes) have no significant identifiable gene enrichment. We propose that MYC cooperates with the NuA4 complex to activate the MTcoR panel of genes to promote DNA replication and cell cycle.

2.
Methods Mol Med ; 131: 15-31, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17656772

RESUMEN

Adenoviruses (Ads), like other DNA tumor viruses, have evolved specific regulatory genes that facilitate virus replication by controlling the transcription of other viral genes as well as that of key cellular genes. In this regard, the E1A transcription unit contains multiple protein domains that can transcriptionally activate or repress cellular genes involved in the regulation of cell proliferation and cell differentiation. Studies using in vitro transcription have provided a basis for a molecular understanding of the interaction of viral regulatory proteins with the transcriptional machinery of the cell and continue to inform our understanding of transcription regulation. This chapter provides examples of the use of in vitro transcription to analyze transcriptional activation and transcriptional repression by purified, recombinant Ad E1A protein domains and single amino acid substitution mutants as well as the use of protein-affinity chromatography to identify host cell transcription factors involved in viral transcriptional regulation. A detailed description is provided of the methodology to prepare nuclear transcription extract, to prepare biologically active protein domains, to prepare affinity depleted transcription extracts, and to analyze transcription by primer extension and by run-off assay using naked DNA templates.


Asunto(s)
Transcripción Genética , Proteínas Virales/fisiología , Adenoviridae/genética , Cromatografía de Afinidad , Técnicas In Vitro , Sondas Moleculares , Proteínas Virales/genética , Proteínas Virales/aislamiento & purificación
3.
Methods Mol Med ; 131: 157-86, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17656782

RESUMEN

Microinjection of mammalian cells provides a powerful method for analyzing in vivo functions of viral genes and viral gene products. By microinjection, a controlled amount (ranging from several to many thousands of copies) of a viral or cellular gene, a protein product of a gene, a polypeptide fragment encoding a specific protein domain, or an RNA molecule can be delivered into a target cell and the functional consequences analyzed. Microinjection can be used to deliver antibody targeted to a specific protein domain in order to analyze the requirement of the protein for specific cell functions such as cell cycle progression, transcription of specific genes, or intracellular transport. This chapter describes examples of the successful use of microinjection to probe adenovirus E1A regulatory mechanisms. Detailed methods are provided for manual and semiautomatic microinjection of mammalian cells as well as bioassay protocols for microinjected cells including immunofluorescence, colorimetic, in situ hybridization, and autoradiography.


Asunto(s)
Adenoviridae/metabolismo , Microinyecciones , Proteínas Virales/metabolismo , Adenoviridae/genética , Animales , Autorradiografía , Línea Celular , Técnica del Anticuerpo Fluorescente , Genes Virales , Hibridación in Situ , Transcripción Genética , Proteínas Virales/química
4.
Virology ; 512: 172-179, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28965007

RESUMEN

Cellular transformation by adenovirus E1A requires targeting TRRAP, a scaffold protein which helps assemble histone acetyltransferase complexes, including the NuA4 complex. We recently reported that E1A and E1A 1-80 (N-terminal 80 aa) promote association of the proto-oncogene product MYC with the NuA4 complex. The E1A N-terminal TRRAP-targeting (ET) domain is required for E1A 1-80 to interact with the NuA4 complex. We demonstrate that an ET-MYC fusion associates with the NuA4 complex more efficiently than does MYC alone. Because MYC regulates genes for multiple cellular pathways, we performed global RNA-sequence analysis of cells expressing MYC or ET-MYC, and identified a panel of genes (262) preferentially activated by ET-MYC and significantly enriched in genes involved in gene expression and ribosome biogenesis, suggesting that E1A enhances MYC association with the NuA4 complex to activate a set of MYC target genes likely involved in cellular proliferation and cellular transformation by E1A and by MYC.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas E1A de Adenovirus/metabolismo , Complejos Multiproteicos/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Proto-Oncogénicas c-myc/metabolismo , Ribosomas/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas E1A de Adenovirus/genética , Línea Celular , Regulación de la Expresión Génica/fisiología , Humanos , Familia de Multigenes , Complejos Multiproteicos/genética , Proteínas Nucleares/genética , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Proto-Oncogenes Mas , Proteínas Proto-Oncogénicas c-myc/genética
5.
Genes Cancer ; 8(11-12): 752-761, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-29321817

RESUMEN

The proto-oncogene MYC is a transcription factor over-expressed in many cancers and required for cell survival. Its function is regulated by histone acetyltransferase (HAT) complexes, such as the GCN5 complex and the NuA4/Tip60 complex. However, the roles of the HAT complexes during MYC function in cancer have not been well characterized. We recently showed that adenovirus E1A and its N-terminal 80 aa region, E1A 1-80, interact with the NuA4 complex, through the E1A TRRAP-targeting (ET) domain, and enhance MYC association with the NuA4 complex. We show here that the ET domain mainly targets the MYC-NuA4 complex. By global gene expression analysis using E1A 1-80 and deletion mutants, we have identified a panel of genes activated by targeting the MYC-NuA4 complex and notably enriched for genes involved in ribosome biogenesis and gene expression. A second panel of genes is activated by E1A 1-80 targeting of both the MYC-NuA4 complex and p300, and is enriched for genes involved in DNA replication and cell cycle processes. Both panels of genes are highly expressed in cancer cells. Since the ET domain is essential for E1A-mediated cellular transformation, our results suggest that MYC and the NuA4 complex function cooperatively in cell transformation and cancer.

6.
Genes Cancer ; 7(3-4): 98-109, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27382434

RESUMEN

Human cancers frequently arise from increased expression of proto-oncogenes, such as MYC and HER2. Understanding the cellular pathways regulating the transcription and expression of proto-oncogenes is important for targeted therapies for cancer treatment. Adenoviral (Ad) E1A 243R (243 aa residues) is a viral oncoprotein that interacts with key regulators of gene transcription and cell proliferation. We have shown previously that the 80 amino acid N-terminal transcriptional repression domain of E1A 243R (E1A 1-80) can target the histone acetyltransferase (HAT) p300 and repress HER2 in the HER2-overexpressing human breast cancer cell line SKBR3. Expression of E1A 1-80 induces death of SKBR3 and other cancer cell lines. In this study, we performed total cell RNA sequence analysis and identified MYC as the regulatory gene for cellular proliferation most strongly repressed by E1A 1-80. By RT-quantitative PCR analysis we show that repression of MYC in SKBR3 cells occurs early after expression of E1A 1-80, suggesting that MYC may be an early responder of E1A 1-80-mediated transcriptional repression. Of interest, while E1A 1-80 repression of MYC occurs in all eight human cancer cell lines examined, repression of HER2 is cell-type dependent. We demonstrate by ChIP analysis that MYC transcriptional repression by E1A 1-80 is associated with inhibition of acetylation of H3K18 and H4K16 on the MYC promoter, as well as inhibition of RNA Pol II binding to the MYC promoter. Deletion mutant analysis of E1A 1-80 suggests that both p300/CBP and TRRAP are involved in E1A 1-80 repression of MYC transcription. Further, E1A 1-80 interaction with p300/CBP and TRRAP is correlated with inhibition of H3K18 and H4K16 acetylation on the MYC promoter, respectively. Our results indicate that E1A 1-80 may target two important pathways for histone modification to repress transcription in human cancer cells.

7.
Virology ; 499: 178-184, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27664947

RESUMEN

The adenovirus E1A 243R oncoprotein targets TRRAP, a scaffold protein that assembles histone acetyltransferase (HAT) complexes, such as the NuA4/Tip60 complex which mediates transcriptional activity of the proto-oncogene MYC and helps determine the cancer cell phenotype. How E1A transforms cells through TRRAP remains obscure. We performed proteomic analysis with the N-terminal transcriptional repression domain of E1A 243R (E1A 1-80) and showed that E1A 1-80 interacts with TRRAP, p400, and three other members of the NuA4 complex - DMAP1, RUVBL1 and RUVBL2 - not previously shown to associate with E1A 243R. E1A 1-80 interacts with these NuA4 components and MYC through the E1A TRRAP-targeting domain. E1A 243R association with the NuA4 complex was demonstrated by co-immunoprecipitation and analysis with DMAP1, Tip60, and MYC. Significantly, E1A 243R promotes association of MYC/MAX with the NuA4/Tip60 complex, implicating the importance of the MYC/NuA4 pathway in cellular transformation by both MYC and E1A.


Asunto(s)
Proteínas E1A de Adenovirus/metabolismo , Histona Acetiltransferasas/metabolismo , Complejos Multiproteicos/metabolismo , Dominios y Motivos de Interacción de Proteínas , Proteínas Proto-Oncogénicas c-myc/metabolismo , Proteínas E1A de Adenovirus/química , Proteínas Portadoras/metabolismo , Línea Celular , Transformación Celular Neoplásica/metabolismo , Expresión Génica , Genes Reporteros , Vectores Genéticos/genética , Humanos , Lisina Acetiltransferasa 5 , Modelos Biológicos , Proteínas Oncogénicas/metabolismo , Unión Proteica , Mapeo de Interacción de Proteínas , Proteómica/métodos , Proto-Oncogenes Mas
8.
Genes Cancer ; 6(1-2): 30-7, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25821559

RESUMEN

Expression of the adenovirus E1A N-terminal transcription repression domain alone (E1A 1-80) represses transcription from specific promoters such as HER2 [1] and from reconstituted chromatin [2]. Significantly, E1A 1-80 can induce the death of human breast cancer cells over-expressing the HER2 oncogene [1] as well as other cancer cells. Here, we report that E1A 1-80 alone is sufficient to inhibit H3K18 acetylation in vivo and p300-mediated H3K18 acetylation in reconstituted chromatin. Of interest, hypoacetylation of H3K18 has been correlated with the survival of tumor cells and the poor prognosis of many cancers [3, 4]. E1A 1-80 enhances p300 autoacetylation and concurrently inhibits H3K18 acetylation in chromatin in a dose-dependent manner. Pre-acetylation of p300 by incubation with acetyl-CoA alone reduces p300's ability to acetylate H3K18 in chromatin. Additional acetylation of p300 in the presence of E1A 1-80 produces stronger inhibition of H3K18 acetylation. These findings indicate that autoacetylation of p300 greatly reduces its ability to acetylate H3K18. The results reported here combined with our previous findings suggest that E1A can repress transcription by multiple strategies, including altering the chromatin modifying activity of p300 and dissociating TFIID from the TATA box thus disrupting formation of the transcription pre-initiation complex [5, 6].

9.
Virology ; 515: 261-262, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29407073
10.
Virology ; 428(1): 70-5, 2012 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-22521914

RESUMEN

The adenovirus repression domain of E1A 243R at the E1A N-terminus (E1A 1-80) transcriptionally represses genes involved in differentiation and cell cycle progression. E1A 1-80 represses transcription in vitro from naked DNA templates through its interaction with p300 and TFIID. E1A 1-80 can also interact with several chromatin remodeling factors and associates with chromatin in vivo. We show here that E1A 243R and E1A 1-80 can repress transcription from a reconstituted chromatin template in vitro. Temporal analysis reveals strong repression by E1A 1-80 when added at pre-activation, activation and early transcription stages. Interestingly, E1A 1-80 can greatly enhance transcription from chromatin templates, but not from naked DNA, when added at pre-initiation complex (PIC) formation and transcription-initiation stages. These data reveal a new dimension for E1A 1-80's interface with chromatin and may reflect its interaction with key players in PIC formation, p300 and TFIID, and/or possibly a role in chromatin remodeling.


Asunto(s)
Proteínas E1A de Adenovirus/química , Proteínas E1A de Adenovirus/metabolismo , Infecciones por Adenovirus Humanos/genética , Adenovirus Humanos/metabolismo , Cromatina/genética , Regulación hacia Abajo , Transcripción Genética , Proteínas E1A de Adenovirus/genética , Infecciones por Adenovirus Humanos/metabolismo , Infecciones por Adenovirus Humanos/virología , Adenovirus Humanos/química , Adenovirus Humanos/genética , Secuencias de Aminoácidos , Cromatina/metabolismo , Humanos
11.
Genes Cancer ; 2(7): 737-44, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22207899

RESUMEN

Adenovirus (Ad) early gene 1A 243 residue protein (E1A 243R) possesses a potent transcription-repression function within the N-terminal 80 amino acids (E1A 1-80). We examined the ability of E1A 243R and E1A 1-80 to repress transcription of both an exogenous and the endogenous HER2 promoter in a human breast cancer cell line upregulated for the HER2 proto-oncogene (SK-BR-3). Both moieties repressed HER2 expression by over 90%. When E1A 1-80 was expressed from a nonreplicative Ad vector, levels of expression were lower than anticipated. Addition of nonspecific sequences to the E1A 1-80 C-terminus (E1A 1-80 C+) enhanced its expression 10- to 20-fold. Because "oncogene addiction" suggests that repression of HER2 could kill HER2 upregulated cells, we examined the ability of full-length E1A 243R and E1A 1-80 C+ delivered by an Ad vector to kill HER2 upregulated SK-BR-3 cells. Expression of both E1A 243R and E1A 1-80 C+ killed SK-BR-3 cells but not normal breast cells. E1A 1-80 C+ is a particularly effective killer of SK-BR-3 cells. At 144 h post infection, over 85% of SK-BR-3 cells were killed by a 100 moi of the Ad vector expressing E1A 1-80 C+. As controls, Ad vectors expressing E1A 243R with deletion of all known functional domains or expressing unrelated ß-galactosidase had no effect. Three additional human breast cancer cells lines reported to be upregulated for HER2 or another EGF family member (EGFR) were found to be efficiently killed by expression of E1A 1-80 C+, whereas three additional "normal" cell lines (two derived from breast and one from foreskin) were not. The ability of the E1A transcription-repression domain alone to kill HER2 upregulated breast cancer cells has potential for development of therapies for treatment of aggressive human breast cancers and potentially other human cancers that overexpress HER2.

12.
Virology ; 371(1): 1-7, 2008 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-18036630

RESUMEN

The adenovirus E1A 243R oncoprotein encodes a potent transcription-repression function within the N-terminal 80 amino acids. Our proposed model of E1A repression predicts that E1A interacts with important cellular proteins on chromatin. Consistent with this idea, we report here that E1A proteins from in vivo formaldehyde cross-linked 293 cells are closely associated with chromatin even after several stringent purification steps including double isopycnic CsCl density gradient centrifugation and size exclusion chromatography. Likewise, E1A proteins expressed from virus during productive infection of HeLa cells are closely associated with chromatin starting at early times after infection. No other adenoviral proteins are necessary for E1A 243R protein to associate with chromatin. Analyses of chromatin from HeLa cells infected with adenovirus vectors expressing E1A 243R protein with deletions in different E1A functional domains indicate that sequences within the E1A N-terminal repression domain are needed for the majority of E1A's interactions with chromatin.


Asunto(s)
Proteínas E1A de Adenovirus/fisiología , Transformación Celular Viral , Cromatina/fisiología , Adenoviridae/genética , Proteínas E1A de Adenovirus/química , Proteínas E1A de Adenovirus/aislamiento & purificación , Secuencia de Aminoácidos , Línea Celular , Línea Celular Transformada , Centrifugación por Gradiente de Densidad , Centrifugación Isopicnica , Cesio/química , Cloruros/química , Cromatina/química , Cromatografía en Gel , Células Clonales , Reactivos de Enlaces Cruzados/química , Formaldehído/química , Vectores Genéticos , Células HeLa , Humanos , Riñón/citología , Datos de Secuencia Molecular , Estructura Terciaria de Proteína , Eliminación de Secuencia
13.
Curr Protoc Microbiol ; Chapter 14: Unit 14C.1, 2006 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-18770578

RESUMEN

Detailed protocols are described for the propagation of adenoviruses (Ads) and adenovirus (Ad) vectors and their purification by CsCl equilibrium density gradient centrifugation. A discussion of monolayer and spinner cell culture techniques suitable, respectively, for small- and large-scale growth of adenoviruses is provided. Protocols for cloning into and growth of Ad replication-deficient vectors using a convenient commercially available system are described. Lastly, time-tested plaque titration protocols for the accurate and convenient measurement of the infectivity of adenoviruses and adenovirus vectors are provided in detail.


Asunto(s)
Adenovirus Humanos/fisiología , Virología/métodos , Adenovirus Humanos/crecimiento & desarrollo , Adenovirus Humanos/aislamiento & purificación , Centrifugación por Gradiente de Densidad , Humanos , Cultivo de Virus/métodos
14.
Virology ; 351(2): 312-21, 2006 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-16678877

RESUMEN

Adenovirus early gene 1A (E1A) possesses a potent transcriptional repression function within the first 80 amino acids (E1A 1-80). Our previous analysis of subdomain 1 (residues 1 to 30) revealed strong correlations between residues required for repression and for disruption of TBP-TATA complexes. Here, we report a functional analysis of subdomain 2 (48 to 60) by alanine-scanning mutagenesis. 53Ala, 54Pro, 55Glu, and 56Asp are required for repression in vitro and in vivo and for efficient interaction with p300 but not for disruption of TBP-TATA. These combined results suggest a model for E1A transcription repression. E1A through subdomains 1 and 2 uses coactivators like p300 as scaffolds to access E1A repressible promoters. At the promoter, subdomain 1 interacts with TBP to disrupt TBP-TATA and abort transcription initiation. In further support of this model, we show that E1A 1-80 bound to the p300-binding site retains the ability to interact with TBP.


Asunto(s)
Proteínas E1A de Adenovirus/genética , Proteínas E1A de Adenovirus/metabolismo , Regulación de la Expresión Génica , Proteínas Represoras/química , Proteínas Represoras/metabolismo , Transcripción Genética , Proteínas E1A de Adenovirus/química , Línea Celular Tumoral , Humanos , Mutación , Estructura Terciaria de Proteína , Proteínas Represoras/genética
15.
J Virol ; 76(3): 1461-74, 2002 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-11773419

RESUMEN

The adenovirus (Ad) E1A 243R oncoprotein encodes an N-terminal transcription repression domain that is essential for early viral functions, cell immortalization, and cell transformation. The transcription repression function requires sequences within amino acids 1 to 30 and 48 to 60. To elucidate the roles of the TATA-binding protein (TBP), p300, and the CREB-binding protein (CBP) in the mechanism(s) of E1A repression, we have constructed 29 amino acid substitution mutants and 5 deletion mutants spanning the first 30 amino acids within the E1A 1-80 polypeptide backbone. These mutant E1A polypeptides were characterized with regard to six parameters: the ability to repress transcription in vitro and in vivo, to disrupt TBP-TATA box interaction, and to bind TBP, p300, and CBP. Two regions within E1A residues 1 to 30, amino acids 2 to 6 and amino acid 20, are critical for E1A transcription repression in vitro and in vivo and for the ability to interfere with TBP-TATA interaction. Replacement of 6Cys with Ala in the first region yields the most defective mutant. Replacement of 20Leu with Ala, but not substitutions in flanking residues, yields a substantially defective phenotype. Protein binding assays demonstrate that replacement of 6Cys with Ala yields a mutant completely defective in interaction with TBP, p300, and CBP. Our findings are consistent with a model in which the E1A repression function involves interaction of E1A with p300/CBP and interference with the formation of a TBP-TATA box complex.


Asunto(s)
Proteínas E1A de Adenovirus/metabolismo , Adenovirus Humanos/metabolismo , Proteínas de Unión al ADN/metabolismo , Regulación de la Expresión Génica , Proteínas Represoras/metabolismo , TATA Box , Factores de Transcripción/metabolismo , Proteínas E1A de Adenovirus/genética , Adenovirus Humanos/genética , Aminoácidos , Sitios de Unión , Proteína de Unión a CREB , Proteínas de Unión al ADN/genética , Humanos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Péptidos/genética , Péptidos/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Represoras/genética , Relación Estructura-Actividad , Proteína de Unión a TATA-Box , Transactivadores/genética , Transactivadores/metabolismo , Factores de Transcripción/genética , Transcripción Genética , Células Tumorales Cultivadas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA