Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 126
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Biol Chem ; 295(8): 2348-2358, 2020 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-31959629

RESUMEN

The oncogenic receptor tyrosine kinase AXL is overexpressed in cancer and plays an important role in carcinomas of multiple organs. However, the mechanisms of AXL overexpression in cancer remain unclear. In this study, using HEK293T, Panc-1, and Panc-28 cells and samples of human pancreatic intraepithelial neoplasia (PanIN), along with several biochemical approaches and immunofluorescence microscopy analyses, we sought to investigate the mechanisms that regulate AXL over-expression in pancreatic ductal adenocarcinoma (PDAC). We found that AXL interacts with hematopoietic progenitor kinase 1 (HPK1) and demonstrate that HPK1 down-regulates AXL and decreases its half-life. The HPK1-mediated AXL degradation was inhibited by the endocytic pathway inhibitors leupeptin, bafilomycin A1, and monensin. HPK1 accelerated the movement of AXL from the plasma membrane to endosomes in pancreatic cancer cells treated with the AXL ligand growth arrest-specific 6 (GAS6). Moreover, HPK1 increased the binding of AXL to the Cbl proto-oncogene (c-Cbl); promoted AXL ubiquitination; decreased AXL-mediated signaling, including phospho-AKT and phospho-ERK signaling; and decreased the invasion capability of PDAC cells. Importantly, we show that AXL expression inversely correlates with HPK1 expression in human PanINs and that patients whose tumors have low HPK1 and high AXL expression levels have shorter survival than those with low AXL or high HPK1 expression (p < 0.001). Our results suggest that HPK1 is a tumor suppressor that targets AXL for degradation via the endocytic pathway. HPK1 loss of function may contribute to AXL overexpression and thereby enhance AXL-dependent downstream signaling and tumor invasion in PDAC.


Asunto(s)
Regulación hacia Abajo , Oncogenes , Neoplasias Pancreáticas/enzimología , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Tirosina Quinasas Receptoras/metabolismo , Carcinoma in Situ/enzimología , Carcinoma in Situ/patología , Línea Celular Tumoral , Citoplasma/metabolismo , Endocitosis , Endosomas/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Estimación de Kaplan-Meier , Sistema de Señalización de MAP Quinasas , Invasividad Neoplásica , Neoplasias Pancreáticas/patología , Unión Proteica , Transporte de Proteínas , Proteolisis , Proto-Oncogenes Mas , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas c-cbl/metabolismo , Ubiquitinación , Tirosina Quinasa del Receptor Axl
2.
Lab Invest ; 101(2): 177-192, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33009500

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is the third leading cause of cancer-related death in the United States. Despite the high prevalence of Kras mutations in pancreatic cancer patients, murine models expressing the oncogenic mutant Kras (Krasmut) in mature pancreatic cells develop PDAC at a low frequency. Independent of cell of origin, a second genetic hit (loss of tumor suppressor TP53 or PTEN) is important for development of PDAC in mice. We hypothesized ectopic expression and elevated levels of oncogenic mutant Kras would promote PanIN arising in pancreatic ducts. To test our hypothesis, the significance of elevating levels of K-Ras and Ras activity has been explored by expression of a CAG driven LGSL-KrasG12V allele (cKras) in pancreatic ducts, which promotes ectopic Kras expression. We predicted expression of cKras in pancreatic ducts would generate neoplasia and PDAC. To test our hypothesis, we employed tamoxifen dependent CreERT2 mediated recombination. Hnf1b:CreERT2;KrasG12V (cKrasHnf1b/+) mice received 1 (Low), 5 (Mod) or 10 (High) mg per 20 g body weight to recombine cKras in low (cKrasLow), moderate (cKrasMod), and high (cKrasHigh) percentages of pancreatic ducts. Our histologic analysis revealed poorly differentiated aggressive tumors in cKrasHigh mice. cKrasMod mice had grades of Pancreatic Intraepithelial Neoplasia (PanIN), recapitulating early and advanced PanIN observed in human PDAC. Proteomics analysis revealed significant differences in PTEN/AKT and MAPK pathways between wild type, cKrasLow, cKrasMod, and cKrasHigh mice. In conclusion, in this study, we provide evidence that ectopic expression of oncogenic mutant K-Ras in pancreatic ducts generates early and late PanIN as well as PDAC. This Ras rheostat model provides evidence that AKT signaling is an important early driver of invasive ductal derived PDAC.


Asunto(s)
Carcinoma Ductal Pancreático , Tasa de Mutación , Neoplasias Pancreáticas , Proteínas Proto-Oncogénicas p21(ras) , Animales , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patología , Modelos Animales de Enfermedad , Regulación Neoplásica de la Expresión Génica , Ratones , Ratones Transgénicos , Conductos Pancreáticos/citología , Conductos Pancreáticos/metabolismo , Conductos Pancreáticos/patología , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , Lesiones Precancerosas/genética , Lesiones Precancerosas/metabolismo , Lesiones Precancerosas/patología , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Recombinación Genética
3.
Gastroenterology ; 158(4): 1072-1082.e7, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31419436

RESUMEN

BACKGROUND & AIMS: Mutations in the trypsinogen gene (PRSS1) cause human hereditary pancreatitis. However, it is not clear how mutant forms of PRSS1 contribute to disease development. We studied the effects of expressing mutant forms of human PRSS1 in mice. METHODS: We expressed forms of PRSS1 with and without the mutation encoding R122H (PRSS1R122H) specifically in pancreatic acinar cells under control of a full-length pancreatic elastase gene promoter. Mice that did not express these transgenes were used as controls. Mice were given injections of caerulein to induce acute pancreatitis or injections of lipopolysaccharide to induce chronic pancreatitis. Other groups of mice were fed ethanol or placed on a high-fat diet to induce pancreatitis. Pancreata were collected and analyzed by histology, immunoblots, real-time polymerase chain reaction, and immunohistochemistry. Trypsin enzymatic activity and chymotrypsin enzymatic activity were measured in pancreatic homogenates. Blood was collected and serum amylase activity was measured. RESULTS: Pancreata from mice expressing transgenes encoding PRSS1 or PRSS1R122H had focal areas of inflammation; these lesions were more prominent in mice that express PRSS1R122H. Pancreata from mice that express PRSS1 or PRSS1R122H had increased levels of heat shock protein 70 and nuclear factor (erythroid-derived 2)-like 2, and reduced levels of chymotrypsin C compared with control mice. Increased expression of PRSS1 or PRSS1R122H increased focal damage in pancreatic tissues and increased the severity of acute pancreatitis after caerulein injection. Administration of lipopolysaccharide exacerbated inflammation in mice that express PRSS1R122H compared to mice that express PRSS1 or control mice. Mice that express PRSS1R122H developed more severe pancreatitis after ethanol feeding or a high-fat diet than mice that express PRSS1 or control mice. Pancreata from mice that express PRSS1R122H had more DNA damage, apoptosis, and collagen deposition and increased trypsin activity and infiltration by inflammatory cells than mice that express PRSS1 or control mice. CONCLUSIONS: Expression of a transgene encoding PRSS1R122H in mice promoted inflammation and increased the severity of pancreatitis compared with mice that express PRSS1 or control mice. These mice might be used as a model for human hereditary pancreatitis and can be studied to determine mechanisms of induction of pancreatitis by lipopolysaccharide, ethanol, or a high-fat diet.


Asunto(s)
Inmunidad Adaptativa/genética , Expresión Génica/inmunología , Pancreatitis/genética , Transgenes/inmunología , Tripsina/inmunología , Células Acinares/inmunología , Animales , Humanos , Ratones , Ratones Transgénicos , Mutación , Páncreas/inmunología , Pancreatitis/inmunología , Tripsinógeno/inmunología
4.
Pancreatology ; 21(1): 115-123, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33341341

RESUMEN

Glutathione-S-transferases (GSTs) not only show cytoprotective role and their involvement in the development of anticancer drug resistance, but also transmit signals that control cell proliferation and apoptosis. However, the role of GST isoforms in chemotherapy resistance remains elusive in pancreatic cancer. Here, we demonstrated that gemcitabine treatment increased the GSTM2 expression in pancreatic cancer cell lines. Knockdown of GSTM2 by siRNA elevated apoptosis and decreased viability of pancreatic cancer cells treated with gemcitabine. Moreover, in vivo experiments further showed that shRNA induced GSTM2 downregulation enhanced drug sensitivity of gemcitabine in orthotopic pancreatic tumor mice. We also found that GSTM2 levels were lower in tumor tissues than in non-tumor tissues and higher GSTM2 expression was significantly associated with longer overall survival. In conclusion, our findings indicate that GSTM2 expression is essential for the survival of pancreatic cancer cells undergoing gemcitabine treatment and leads to chemo resistance. Downregulation of GSTM2 in pancreatic cancer may benefit gemcitabine treatment. GSTM2 expression in patients also shows significant correlation with overall survival. Thus, our study suggests that GSTM2 is a potential target for chemotherapy optimization and prognostic biomarker of pancreatic cancer.


Asunto(s)
Desoxicitidina/análogos & derivados , Regulación hacia Abajo , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Glutatión Transferasa/metabolismo , Neoplasias Pancreáticas/tratamiento farmacológico , Antineoplásicos/farmacología , Biomarcadores de Tumor , Desoxicitidina/farmacología , Resistencia a Antineoplásicos/genética , Marcadores Genéticos , Glutatión Transferasa/genética , Humanos , Interferencia de ARN , Gemcitabina
5.
Gastroenterology ; 157(5): 1413-1428.e11, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31352001

RESUMEN

BACKGROUND & AIMS: Obesity is a risk factor for pancreatic cancer. In mice, a high-fat diet (HFD) and expression of oncogenic KRAS lead to development of invasive pancreatic ductal adenocarcinoma (PDAC) by unknown mechanisms. We investigated how oncogenic KRAS regulates the expression of fibroblast growth factor 21, FGF21, a metabolic regulator that prevents obesity, and the effects of recombinant human FGF21 (rhFGF21) on pancreatic tumorigenesis. METHODS: We performed immunohistochemical analyses of FGF21 levels in human pancreatic tissue arrays, comprising 59 PDAC specimens and 45 nontumor tissues. We also studied mice with tamoxifen-inducible expression of oncogenic KRAS in acinar cells (KrasG12D/+ mice) and fElasCreERT mice (controls). KrasG12D/+ mice were placed on an HFD or regular chow diet (control) and given injections of rhFGF21 or vehicle; pancreata were collected and analyzed by histology, immunoblots, quantitative polymerase chain reaction, and immunohistochemistry. We measured markers of inflammation in the pancreas, liver, and adipose tissue. Activity of RAS was measured based on the amount of bound guanosine triphosphate. RESULTS: Pancreatic tissues of mice expressed high levels of FGF21 compared with liver tissues. FGF21 and its receptor proteins were expressed by acinar cells. Acinar cells that expressed KrasG12D/+ had significantly lower expression of Fgf21 messenger RNA compared with acinar cells from control mice, partly due to down-regulation of PPARG expression-a transcription factor that activates Fgf21 transcription. Pancreata from KrasG12D/+ mice on a control diet and given injections of rhFGF21 had reduced pancreatic inflammation, infiltration by immune cells, and acinar-to-ductal metaplasia compared with mice given injections of vehicle. HFD-fed KrasG12D/+ mice given injections of vehicle accumulated abdominal fat, developed extensive inflammation, pancreatic cysts, and high-grade pancreatic intraepithelial neoplasias (PanINs); half the mice developed PDAC with liver metastases. HFD-fed KrasG12D/+ mice given injections of rhFGF21 had reduced accumulation of abdominal fat and pancreatic triglycerides, fewer pancreatic cysts, reduced systemic and pancreatic markers of inflammation, fewer PanINs, and longer survival-only approximately 12% of the mice developed PDACs, and none of the mice had metastases. Pancreata from HFD-fed KrasG12D/+ mice given injections of rhFGF21 had lower levels of active RAS than from mice given vehicle. CONCLUSIONS: Normal acinar cells from mice and humans express high levels of FGF21. In mice, acinar expression of oncogenic KRAS significantly reduces FGF21 expression. When these mice are placed on an HFD, they develop extensive inflammation, pancreatic cysts, PanINs, and PDACs, which are reduced by injection of FGF21. FGF21 also reduces the guanosine triphosphate binding capacity of RAS. FGF21 might be used in the prevention or treatment of pancreatic cancer.


Asunto(s)
Células Acinares/metabolismo , Carcinoma Ductal Pancreático/metabolismo , Transformación Celular Neoplásica/metabolismo , Dieta Alta en Grasa , Factores de Crecimiento de Fibroblastos/metabolismo , Neoplasias Intraductales Pancreáticas/metabolismo , Neoplasias Pancreáticas/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Células Acinares/patología , Animales , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patología , Carcinoma Ductal Pancreático/prevención & control , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/patología , Regulación hacia Abajo , Factores de Crecimiento de Fibroblastos/genética , Regulación Neoplásica de la Expresión Génica , Humanos , Proteínas Klotho , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones Transgénicos , Mutación , PPAR gamma/genética , PPAR gamma/metabolismo , Quiste Pancreático/genética , Quiste Pancreático/metabolismo , Quiste Pancreático/patología , Neoplasias Intraductales Pancreáticas/genética , Neoplasias Intraductales Pancreáticas/patología , Neoplasias Intraductales Pancreáticas/prevención & control , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología , Neoplasias Pancreáticas/prevención & control , Pancreatitis/genética , Pancreatitis/metabolismo , Pancreatitis/patología , Proteínas Proto-Oncogénicas p21(ras)/genética , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/genética , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/metabolismo , Transducción de Señal , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
6.
Am J Physiol Gastrointest Liver Physiol ; 316(1): G179-G186, 2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30431318

RESUMEN

Replacement of the exocrine parenchyma by fibrous tissue is a main characteristic of chronic pancreatitis. Understanding the mechanisms of pancreatic fibrogenesis is critical for the development of preventive and therapeutic interventions. Cyclooxygenase-2 (COX-2), a rate-limiting enzyme for prostaglandin synthesis, is expressed in patients with chronic pancreatitis. However, it is unknown whether COX-2 can cause chronic pancreatitis. To investigate the roles of pancreatic acinar COX-2 in fibrogenesis and the development of chronic pancreatitis, COX-2 was ectopically expressed specifically in pancreatic acinar cells in transgenic mice. Histopathological changes and expression levels of several profibrogenic factors related to chronic pancreatitis were evaluated. COX-2 was expressed in the pancreas of the transgenic mice, as detected by Western blot analysis. Immunohistochemical staining showed COX-2 was specifically expressed in pancreatic acinar cells. COX-2 expression led to progressive changes in the pancreas, including pancreas megaly, persistent inflammation, collagen deposition, and acinar-to-ductal metaplasia. Quantitative RT-PCR and immunostaining showed that profibrogenic factors were upregulated and pancreatic stellate cells were activated in the COX-2 transgenic mice. Expression of COX-2 in pancreatic acinar cells is sufficient to induce chronic pancreatitis. Targeting this pathway may be valuable in the prevention of chronic pancreatitis. NEW & NOTEWORTHY COX-2 expression is observed in pancreatic tissues of human chronic pancreatitis. In this study, we showed that COX-2 expression caused the development of chronic pancreatitis in transgenic mice, supporting the idea that COX-2 inhibition may be an effective preventive and therapeutic strategy.


Asunto(s)
Células Acinares/metabolismo , Ciclooxigenasa 2/genética , Ciclooxigenasa 2/metabolismo , Pancreatitis Crónica/metabolismo , Animales , Transformación Celular Neoplásica/metabolismo , Inflamación/metabolismo , Ratones Transgénicos , Páncreas/metabolismo , Páncreas Exocrino/metabolismo , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Células Estrelladas Pancreáticas/metabolismo
7.
Gastroenterology ; 154(5): 1524-1537.e6, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29274868

RESUMEN

BACKGROUND & AIMS: Pancreatic ductal adenocarcinoma (PDAC) is characterized by activated pancreatic stellate cells (PSCs), abundance of extracellular matrix (ECM), and production of cytokines and chemokines. Galectin 3 (GAL3), a ß-galactoside-specific lectin, contributes to PDAC development but its effects on the stroma and cytokine production are unclear. METHODS: The effect of recombinant human GAL3 (rGAL3) on activation of PSCs, production of cytokines, and ECM proteins was determined by proliferation, invasion, cytokine array, and quantitative polymerase chain reaction. We assessed co-cultures of PDAC cells with GAL3 genetic alterations with PSCs. Production of interleukin 8 (IL8) and activities of nuclear factor (NF)-κB were determined by enzyme-linked immunosorbent assay and luciferase reporter analyses. We studied the effects of inhibitors of NF-κB and integrin-linked kinase (ILK) on pathways activated by rGAL3. RESULTS: In analyses of the Gene Expression Omnibus database and our dataset, we observed higher levels of GAL3, IL8, and other cytokines in PDAC than in nontumor tissues. Production of IL8, granulocyte-macrophage colony-stimulating factor, chemokine ligand 1, and C-C motif chemokine ligand 2 increased in PSCs exposed to rGAL3 compared with controls. Culture of PSCs with PDAC cells that express different levels of GAL3 resulted in proliferation and invasion of PSCs that increased with level of GAL3. GAL3 stimulated transcription of IL8 through integrin subunit beta 1 (ITGB1) on PSCs, which activates NF-κB through ILK. Inhibitors of ILK or NF-κB or a neutralizing antibody against ITGB1 blocked transcription and production of IL8 from PSCs induced by rGAL3. The GAL3 inhibitor significantly reduced growth and metastases of orthotopic tumors that formed from PDAC and PSC cells co-implanted in mice. CONCLUSION: GAL3 activates PSC cells to produce inflammatory cytokines via ITGB1signaling to ILK and activation of NF-κB. Inhibition of this pathway reduced growth and metastases of pancreatic orthotopic tumors in mice.


Asunto(s)
Carcinoma Ductal Pancreático/metabolismo , Citocinas/metabolismo , Galectina 3/metabolismo , Integrina beta1/metabolismo , Neoplasias Pancreáticas/metabolismo , Células Estrelladas Pancreáticas/metabolismo , Comunicación Paracrina , Células del Estroma/metabolismo , Microambiente Tumoral , Animales , Antineoplásicos/farmacología , Proteínas Sanguíneas , Carcinoma Ductal Pancreático/tratamiento farmacológico , Carcinoma Ductal Pancreático/inmunología , Carcinoma Ductal Pancreático/secundario , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Técnicas de Cocultivo , Citocinas/genética , Proteínas de la Matriz Extracelular/metabolismo , Galectina 3/antagonistas & inhibidores , Galectinas , Regulación Neoplásica de la Expresión Génica , Humanos , Ratones Desnudos , FN-kappa B/antagonistas & inhibidores , FN-kappa B/metabolismo , Invasividad Neoplásica , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/inmunología , Neoplasias Pancreáticas/patología , Células Estrelladas Pancreáticas/efectos de los fármacos , Células Estrelladas Pancreáticas/inmunología , Células Estrelladas Pancreáticas/patología , Comunicación Paracrina/efectos de los fármacos , Fenotipo , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal , Células del Estroma/efectos de los fármacos , Células del Estroma/inmunología , Células del Estroma/patología , Factores de Tiempo , Transcripción Genética , Ensayos Antitumor por Modelo de Xenoinjerto
8.
Cell Commun Signal ; 17(1): 19, 2019 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-30819189

RESUMEN

Oncogenic KRAS plays a vital role in controlling tumor metabolism by enhancing aerobic glycolysis. Obesity driven by chronic consumption of high-fat diet (HFD) is a major risk factor for oncogenic KRAS-mediated pancreatic ductal adenocarcinoma (PDAC). However, the role of HFD in KRAS-mediated metabolic reprogramming has been obscure. Here, by using genetically engineered mouse models expressing an endogenous level of KRASG12D in pancreatic acinar cells, we demonstrate that hyperactivation of KRASG12D by obesogenic HFD, as compared to carbohydrate-rich diet, is responsible for enhanced aerobic glycolysis that associates with critical pathogenic responses in the path towards PDAC. Ablation of Cox-2 attenuates KRAS hyperactivation leading to the reversal of both aggravated aerobic glycolysis and high-grade dysplasia under HFD challenge. Our data highlight a pivotal role of the cooperative interaction between obesity-ensuing HFD and oncogenic KRAS in driving the heightened aerobic glycolysis during pancreatic tumorigenesis and suggest that in addition to directly targeting KRAS and aerobic glycolysis pathway, strategies to target the upstream of KRAS hyperactivation may bear important therapeutic value.


Asunto(s)
Dieta Alta en Grasa , Glucólisis , Obesidad/metabolismo , Oncogenes , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Aerobiosis , Animales , Ciclooxigenasa 2/metabolismo , Carbohidratos de la Dieta , Ratones , Modelos Biológicos , Obesidad/patología , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , Neoplasias Pancreáticas
9.
Biochem Biophys Res Commun ; 493(1): 592-597, 2017 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-28867179

RESUMEN

Oncogenic KRas activity is central to several cancer types including pancreatic ductal adenocarcinoma (PDAC) but has been determined to be "undruggable". Recent studies have indicated that oncogenic KRas is not constitutively active but relies on a feed-forward stimulatory mechanism involving NFκB mediated inflammation. In the current study, we investigated the role of the receptor for advanced glycation end-products (RAGE) in maintaining oncogenic signaling in PDAC. We observed that there was a shift in the levels of specific RAGE isoforms and altered cellular localization in PDAC. Furthermore, inhibition of RAGE using a pharmacological antagonist, FPS-ZM1, or a blocking antibody, decreased phosphorylation of IKBα and inhibited Erk activity down-stream of Kras in PDAC cell lines. In vivo, inhibition of RAGE using FPS-ZM1 reduced the growth of PDAC syngeneic orthotopic xenografts and prolonged survival. These data indicate that RAGE plays a central role in maintaining inflammatory signaling in PDAC that benefits tumor growth. These observations support the development of approaches to inhibit the carcinogenic actions of Kras indirectly by blocking the mechanisms which maintain its activity.


Asunto(s)
Carcinoma Ductal Pancreático/metabolismo , FN-kappa B/metabolismo , Neoplasias Pancreáticas/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Receptor para Productos Finales de Glicación Avanzada/metabolismo , Animales , Carcinoma Ductal Pancreático/patología , Línea Celular Tumoral , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Ratones , Ratones Endogámicos C57BL , Neoplasias Pancreáticas/patología , Fracciones Subcelulares/metabolismo , Fracciones Subcelulares/patología , Distribución Tisular , Regulación hacia Arriba
11.
Cell Physiol Biochem ; 39(2): 740-50, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27459514

RESUMEN

BACKGROUND/AIMS: The cell surface protein transmembrane 4 L6 family member 1 (TM4SF1) has been detected in various tumors and plays a major role in the development of cancer. We aimed to investigate the effects of TM4SF1 on the migration and invasion of pancreatic cancer in vitro and in vivo and explore its related molecular mechanisms. METHODS: qRT-PCR and immunohistochemical analyses were used to measure the expression of TM4SF1 in pancreatic cancer tissues and adjacent tissues. TM4SF1 was silenced using siRNA and shRNA to investigate the role of this protein in the proliferation and metastasis of pancreatic cancer cells. MTS and Transwell assays were used to examine the effect of TM4SF1 on pancreatic cancer cell lines. The expression and activity of MMP-2 and MMP-9 were determined by qRT-PCR, western blots and gelatin zymography. In vivo, orthotopic pancreatic tumor models were used to examine the formation of metastasis. RESULTS: qRT-PCR and immunohistochemical analyses showed that TM4SF1 was highly expressed in pancreatic cancer tissues compared with the adjacent tissues. In in vitro experiments the silencing of TM4SF1 reduced cell migration and invasion and down-regulated the expression and activity of MMP-2 and MMP-9. However, no significant difference in cell proliferation was detected after silencing TM4SF1. Additionally, knocking down TM4SF1 decreased the formation of lung and liver metastases in orthotopic pancreatic tumor models. CONCLUSION: Our results demonstrate that the expression of TM4SF1 is higher in pancreatic cancer tissues and pancreatic cancer cell lines than controls. Knockdown of TM4SF1 inhibited the migration and invasion of pancreatic cancer cells by regulating the expression and activity of MMP-2 and MMP-9, which suggests that TM4SF1 may play a significant role in metastasis in pancreatic cancer.


Asunto(s)
Antígenos de Superficie/genética , Movimiento Celular/genética , Regulación Neoplásica de la Expresión Génica , Proteínas de Neoplasias/genética , Neoplasias Pancreáticas/genética , Animales , Antígenos de Superficie/metabolismo , Línea Celular Tumoral , Humanos , Inmunohistoquímica , Masculino , Metaloproteinasa 2 de la Matriz/genética , Metaloproteinasa 2 de la Matriz/metabolismo , Metaloproteinasa 9 de la Matriz/genética , Metaloproteinasa 9 de la Matriz/metabolismo , Ratones Desnudos , Invasividad Neoplásica , Metástasis de la Neoplasia , Proteínas de Neoplasias/metabolismo , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/terapia , Interferencia de ARN , Tratamiento con ARN de Interferencia , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Ensayos Antitumor por Modelo de Xenoinjerto
12.
J Biol Chem ; 289(7): 4009-17, 2014 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-24362026

RESUMEN

HPK1, a member of mammalian Ste20-like serine/threonine kinases, is lost in >95% pancreatic cancer through proteasome-mediated degradation. However, the mechanism of HPK1 loss has not been defined. The aims of this study are to identify the ubiquitin ligase and to examine the mechanisms that targets HPK1 degradation. We found that the CUL7/Fbxw8 ubiquitin ligase targeted HPK1 for degradation via the 26 S proteasome. The ubiquitination of HPK1 required its kinase activity and autophosphorylation. Wild-type protein phosphatase 4 (PP4), but not the phosphatase-dead PP4 mutant, PP4-RL, inhibits the interaction of Fbxw8 with HPK1 and Fbxw8-mediated ubiquitination of HPK1. In addition, we showed that Thr-355 of HPK1 is a key PP4 dephosphorylation site, through which CUL7/Fbxw8 ubiquitin ligase and PP4 regulates HPK1 stability. Knockdown of Fbxw8 restores endogenous HPK1 protein expression and inhibits cell proliferation of pancreatic cancer cells. Our study demonstrated that targeted degradation of HPK1 by the CUL7/Fbxw8 ubiquitin ligase constitutes a negative-feedback loop to restrain the activity of HPK1 and that CUL7/Fbxw8 ubiquitin ligase promotes pancreatic cancer cell proliferation. CUL7/Fbxw8 ubiquitin ligase-mediated HPK1 degradation revealed a direct link and novel role of CUL7/Fbxw8 ubiquitin ligase in the MAPK pathway, which plays a critical role in cell proliferation and differentiation.


Asunto(s)
Proteínas Cullin/metabolismo , Proteínas F-Box/metabolismo , Sistema de Señalización de MAP Quinasas , Proteínas de Neoplasias/metabolismo , Neoplasias Pancreáticas/enzimología , Proteínas Serina-Treonina Quinasas/metabolismo , Proteolisis , Diferenciación Celular/genética , Proliferación Celular , Proteínas Cullin/genética , Proteínas F-Box/genética , Regulación Enzimológica de la Expresión Génica/genética , Regulación Neoplásica de la Expresión Génica , Técnicas de Silenciamiento del Gen , Células HEK293 , Humanos , Células Jurkat , Mutación , Proteínas de Neoplasias/genética , Neoplasias Pancreáticas/genética , Fosfoproteínas Fosfatasas/genética , Fosfoproteínas Fosfatasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética
13.
Am J Physiol Gastrointest Liver Physiol ; 309(5): G283-91, 2015 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-26159697

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is relatively rare but extremely lethal. Standard cytotoxic therapeutics provide little benefit. To date, newer targeted therapeutics have also not been highly successful. Often novel therapeutics that have appeared to perform well in preclinical models have failed in the clinic. Many factors contribute to these failures, but the one most often attributed is the shortcomings of the preclinical models. A plethora of animal models now exist for PDAC, including cell line xenografts, patient-derived xenografts, a wide variety of genetic mouse models, and syngeneic xenografts. These models have generated a tremendous amount of information useful for the understanding of PDAC. Yet none seems to well predict clinical outcomes of new treatments. This review will discuss how genetic instability and cellular heterogeneity make this disease so difficult to model accurately. We will also discuss the strengths and weaknesses of many of the popular models. Ultimately we will argue that there is no perfect model and that the best approach to understanding clinical performance is the use of multiple preclinical models with an understanding of their salient features.


Asunto(s)
Carcinoma Ductal Pancreático/patología , Neoplasias Pancreáticas/patología , Ensayos Antitumor por Modelo de Xenoinjerto/métodos , Animales , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/fisiopatología , Carcinoma Ductal Pancreático/terapia , Evaluación Preclínica de Medicamentos/métodos , Humanos , Ratones , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/fisiopatología , Neoplasias Pancreáticas/terapia , Especificidad de la Especie
14.
Biochim Biophys Acta ; 1835(1): 110-8, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23147198

RESUMEN

Pancreatic cancer is the fourth leading cause of cancer deaths and is characterized by dismal prognosis. Xenograft and genetically engineered mouse (GEM) models have recapitulated critical elements of human pancreatic cancer, providing useful tools to probe the underlying cause of cancer etiology. In this review, we provide a brief description of the common genetic lesions that occur during the development of pancreatic cancer. Next, we describe the strengths and weaknesses of these two models and highlight key discoveries each has made. Although the relative merits of GEM and xenograft pancreatic cancer mouse models are subject to debate, both systems have and will continue to yield essential insights in understanding pancreatic cancer etiology. This information is critical for the development of new methods to screen, treat, and prevent pancreatic cancer.


Asunto(s)
Modelos Animales de Enfermedad , Neoplasias Pancreáticas , Animales , Humanos , Ratones
15.
Gastroenterology ; 144(6): 1220-9, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23622131

RESUMEN

The Kras gene is mutated to an oncogenic form in most pancreatic tumors. However, early attempts to use this molecule as a specific biomarker of the disease, or inhibit its activity as a cancer therapy, failed. This left a situation in which everyone was aware of the association between this important oncogene and pancreatic cancer, but no one knew what to do about it. Recent findings have changed this picture-many assumptions made about KRAS and its role in pancreatic cancer were found to be incorrect. Several factors have contributed to increased understanding of the activities of KRAS, including creation of genetically engineered mouse models, which have allowed for detailed analyses of pancreatic carcinogenesis in an intact animal with a competent immune system. Cancer genome sequencing projects have increased our understanding of the heterogeneity of individual tumors. We also have a better understanding of which oncogenes are important for tumor maintenance and are therefore called "drivers." We review the advances and limitations of our knowledge about the role of Kras in development of pancreatic cancers and the important areas for future research.


Asunto(s)
Transformación Celular Neoplásica/genética , Mutación , Neoplasias Pancreáticas/genética , Proteínas Proto-Oncogénicas/genética , Proteínas ras/genética , Animales , Transformación Celular Neoplásica/metabolismo , Transformación Celular Neoplásica/patología , Progresión de la Enfermedad , Regulación Neoplásica de la Expresión Génica , Predisposición Genética a la Enfermedad , Humanos , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , Neoplasias Pancreáticas/terapia , Fenotipo , Pronóstico , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Proto-Oncogénicas p21(ras) , Transducción de Señal , Proteínas ras/metabolismo
16.
Gastroenterology ; 144(1): 202-10, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23041324

RESUMEN

BACKGROUND & AIMS: Nuclear factor-κB (NF-κB) is activated during early stages of pancreatitis. This transcription factor regulates genes that control many cell activities, including inflammation and survival. There is evidence that activation of NF-κB protects against pancreatitis, and, in other cases, that it promotes this disease. We compared the effects of NF-κB in different mouse models of pancreatitis to understand these complications. METHODS: To model constitutive activation of NF-κB, we expressed a transgene that encodes its p65 subunit or the inhibitor of κB kinase (IKK)2 in pancreatic acinar cells of mice. We analyzed effects on pancreatic tissues and levels of NF-κB target genes in these mice and compared them with mice that did not express transgenic p65 or IKK2 (controls). RESULTS: Transgenic expression of p65 led to compensatory expression of the inhibitory subunit IKB-α and, therefore, no clear phenotype. However, p65 transgenic mice given injections of cerulein, to induce acute pancreatitis, had higher levels of NF-κB activity in acinar cells, greater levels of inflammation, and more severe outcomes than control mice. In contrast, constitutive expression of IKK2 directly increased the activity of NF-κB in acinar cells and induced pancreatitis. Prolonged activity of IKK2 (3 months) resulted in activation of stellate cells, loss of acinar cells, and fibrosis, which are characteristics of chronic pancreatitis. Co-expression of IKK2 and p65 greatly increased the expression of inflammatory mediators and the severity of pancreatitis, compared with control mice. CONCLUSIONS: The level of NF-κB activation correlates with the severity of acute pancreatitis in mice. Longer periods of activation (3 months) lead to chronic pancreatitis. These findings indicate that strategies to inactivate NF-κB might be used to treat patients with acute or chronic pancreatitis.


Asunto(s)
Células Acinares/metabolismo , Quinasa I-kappa B/metabolismo , FN-kappa B/metabolismo , Pancreatitis/metabolismo , Pancreatitis/patología , Factor de Transcripción ReIA/metabolismo , Animales , Ceruletida , Modelos Animales de Enfermedad , Fibrosis/genética , Fibrosis/metabolismo , Regulación de la Expresión Génica , Quinasa I-kappa B/genética , Proteínas I-kappa B/genética , Proteínas I-kappa B/metabolismo , Ratones , Ratones Transgénicos , Inhibidor NF-kappaB alfa , FN-kappa B/genética , Células Estrelladas Pancreáticas/metabolismo , Pancreatitis/inducido químicamente , Índice de Severidad de la Enfermedad , Factores de Tiempo , Factor de Transcripción ReIA/genética
17.
Gastroenterology ; 145(6): 1449-58, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23958541

RESUMEN

BACKGROUND & AIMS: Obesity is a risk factor for pancreatic ductal adenocarcinoma (PDAC), but it is not clear how obesity contributes to pancreatic carcinogenesis. The oncogenic form of KRAS is expressed during early stages of PDAC development and is detected in almost all of these tumors. However, there is evidence that mutant KRAS requires an additional stimulus to activate its full oncogenic activity and that this stimulus involves the inflammatory response. We investigated whether the inflammation induced by a high-fat diet, and the accompanying up-regulation of cyclooxygenase-2 (COX2), increases Kras activity during pancreatic carcinogenesis in mice. METHODS: We studied mice with acinar cell-specific expression of KrasG12D (LSL-Kras/Ela-CreERT mice) alone or crossed with COX2 conditional knockout mice (COXKO/LSL-Kras/Ela-CreERT). We also studied LSL-Kras/PDX1-Cre mice. All mice were fed isocaloric diets with different amounts of fat, and a COX2 inhibitor was administered to some LSL-Kras/Ela-CreERT mice. Pancreata were collected from mice and analyzed for Kras activity, levels of phosphorylated extracellular-regulated kinase, inflammation, fibrosis, pancreatic intraepithelial neoplasia (PanIN), and PDACs. RESULTS: Pancreatic tissues from LSL-Kras/Ela-CreERT mice fed high-fat diets (HFDs) had increased Kras activity, fibrotic stroma, and numbers of PanINs and PDACs than LSL-Kras/Ela-CreERT mice fed control diets; the mice fed the HFDs also had shorter survival times than mice fed control diets. Administration of a COX2 inhibitor to LSL-Kras/Ela-CreERT mice prevented these effects of HFDs. We also observed a significant reduction in survival times of mice fed HFDs. COXKO/LSL-Kras/Ela-CreERT mice fed HFDs had no evidence for increased numbers of PanIN lesions, inflammation, or fibrosis, as opposed to the increases observed in LSL-Kras/Ela-CreERT mice fed HFDs. CONCLUSIONS: In mice, an HFD can activate oncogenic Kras via COX2, leading to pancreatic inflammation and fibrosis and development of PanINs and PDAC. This mechanism might be involved in the association between risk for PDAC and HFDs.


Asunto(s)
Adenocarcinoma/fisiopatología , Carcinoma Ductal Pancreático/fisiopatología , Ciclooxigenasa 2/fisiología , Dieta Alta en Grasa/efectos adversos , Neoplasias Pancreáticas/fisiopatología , Proteínas Proto-Oncogénicas p21(ras)/fisiología , Adenocarcinoma/patología , Adiposidad/fisiología , Animales , Carcinoma Ductal Pancreático/patología , Ciclooxigenasa 2/deficiencia , Ciclooxigenasa 2/genética , Modelos Animales de Enfermedad , Fibrosis , Regulación Neoplásica de la Expresión Génica/fisiología , Ratones , Ratones Noqueados , Ratones Transgénicos , Páncreas/patología , Neoplasias Pancreáticas/patología
18.
Cancer Lett ; 586: 216694, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38307409

RESUMEN

The KRASG12D mutation was believed to be locked in a GTP-bound form, rendering it fully active. However, recent studies have indicated that the presence of mutant KRAS alone is insufficient; it requires additional activation through inflammatory stimuli to effectively drive the development of pancreatic ductal adenocarcinoma (PDAC). It remains unclear to what extent RAS activation occurs during the development of PDAC in the context of inflammation. Here, in a mouse model with the concurrent expression of KrasG12D/+ and inflammation mediator IKK2 in pancreatic acinar cells, we showed that, compared to KRASG12D alone, the cooperative interaction between KRASG12D and IKK2 rapidly elevated both the protein level and activity of KRASG12D and NRAS in a short term. This high level was sustained throughout the rest phase of PDAC development. These results suggest that inflammation not only rapidly augments the activity but also the protein abundance, leading to an enhanced total amount of GTP-bound RAS (KRASG12D and NRAS) in the early stage. Notably, while KRASG12D could be further activated by IKK2, not all KRASG12D proteins were in the GTP-bound state. Overall, our findings suggest that although KRASG12D is not fully active in the context of inflammation, concurrent increases in both the protein level and activity of KRASG12D as well as NRAS at the early stage by inflammation contribute to the rise in total GTP-bound RAS.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Ratones , Animales , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Proteínas ras/metabolismo , Neoplasias Pancreáticas/patología , Carcinoma Ductal Pancreático/patología , Mutación , Inflamación/genética , Guanosina Trifosfato
19.
Gastroenterology ; 143(6): 1510-1517.e1, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22960655

RESUMEN

BACKGROUND & AIMS: New-onset diabetes in patients with pancreatic cancer is likely to be a paraneoplastic phenomenon caused by tumor-secreted products. We aimed to identify the diabetogenic secretory product(s) of pancreatic cancer. METHODS: Using microarray analysis, we identified adrenomedullin as a potential mediator of diabetes in patients with pancreatic cancer. Adrenomedullin was up-regulated in pancreatic cancer cell lines, in which supernatants reduced insulin signaling in beta cell lines. We performed quantitative reverse-transcriptase polymerase chain reaction and immunohistochemistry on human pancreatic cancer and healthy pancreatic tissues (controls) to determine expression of adrenomedullin messenger RNA and protein, respectively. We studied the effects of adrenomedullin on insulin secretion by beta cell lines and whole islets from mice and on glucose tolerance in pancreatic xenografts in mice. We measured plasma levels of adrenomedullin in patients with pancreatic cancer, patients with type 2 diabetes mellitus, and individuals with normal fasting glucose levels (controls). RESULTS: Levels of adrenomedullin messenger RNA and protein were increased in human pancreatic cancer samples compared with controls. Adrenomedullin and conditioned media from pancreatic cell lines inhibited glucose-stimulated insulin secretion from beta cell lines and islets isolated from mice; the effects of conditioned media from pancreatic cancer cells were reduced by small hairpin RNA-mediated knockdown of adrenomedullin. Conversely, overexpression of adrenomedullin in mice with pancreatic cancer led to glucose intolerance. Mean plasma levels of adrenomedullin (femtomoles per liter) were higher in patients with pancreatic cancer compared with patients with diabetes or controls. Levels of adrenomedullin were higher in patients with pancreatic cancer who developed diabetes compared those who did not. CONCLUSIONS: Adrenomedullin is up-regulated in patients with pancreatic cancer and causes insulin resistance in ß cells and mice.


Asunto(s)
Adenocarcinoma/metabolismo , Adrenomedulina/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Resistencia a la Insulina/fisiología , Células Secretoras de Insulina/metabolismo , Neoplasias Pancreáticas/metabolismo , Regulación hacia Arriba , Adenocarcinoma/patología , Adrenomedulina/efectos de los fármacos , Adrenomedulina/genética , Anciano , Animales , Línea Celular Tumoral , Células Cultivadas , Diabetes Mellitus Tipo 2/patología , Femenino , Glucosa/farmacología , Humanos , Técnicas In Vitro , Insulina/metabolismo , Células Secretoras de Insulina/efectos de los fármacos , Células Secretoras de Insulina/patología , Masculino , Ratones , Ratones Desnudos , Persona de Mediana Edad , Modelos Animales , Páncreas/metabolismo , Páncreas/patología , Neoplasias Pancreáticas/patología , ARN Interferente Pequeño/farmacología , Ratas , Trasplante Heterólogo
20.
Gut ; 61(9): 1315-22, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22068166

RESUMEN

BACKGROUND AND AIMS: Pancreatic ductal adenocarcinoma (PDAC) is the fourth leading cause of cancer death in the USA. Surgical resection is the only effective treatment; however, only 20% of patients are candidates for surgery. The ability to detect early PDAC would increase the availability of surgery and improve patient survival. This study assessed the feasibility of using the enzymatic activity of cathepsin E (Cath E), a protease highly and specifically expressed in PDAC, as a novel biomarker for the detection of pancreas-bearing pancreatic intraepithelial neoplasia (PanIN) lesions and PDAC. METHODS: Pancreas from normal, chronic pancreatitis and PDAC patients was assessed for Cath E expression by quantitative real-time PCR and immunohistochemistry. Human PDAC xenografts and genetically engineered mouse models (GEMM) of PDAC were injected with a Cath E activity selective fluorescent probe and imaged using an optical imaging system. RESULTS: The specificity of Cath E expression in PDAC patients and GEMM of pancreatic cancer was confirmed by quantitative real-time PCR and immunohistochemistry. The novel probe for Cath E activity specifically detected PDAC in both human xenografts and GEMM in vivo. The Cath E sensitive probe was also able to detect pancreas with PanIN lesions in GEMM before tumour formation. CONCLUSIONS: The elevated Cath E expression in PanIN and pancreatic tumours allowed in-vivo detection of human PDAC xenografts and imaging of pancreas with PanIN and PDAC tumours in GEMM. Our results support the usefulness of Cath E activity as a potential molecular target for PDAC and early detection imaging.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Carcinoma in Situ/diagnóstico , Carcinoma Ductal Pancreático/diagnóstico , Catepsina E/metabolismo , Diagnóstico por Imagen/métodos , Neoplasias Pancreáticas/diagnóstico , Lesiones Precancerosas/diagnóstico , Animales , Biomarcadores de Tumor/genética , Carcinoma in Situ/enzimología , Carcinoma Ductal Pancreático/enzimología , Catepsina E/genética , Línea Celular Tumoral , Cartilla de ADN/química , Modelos Animales de Enfermedad , Diagnóstico Precoz , Estudios de Factibilidad , Regulación Neoplásica de la Expresión Génica , Humanos , Inmunohistoquímica , Ratones , Sondas de Oligonucleótidos/química , Neoplasias Pancreáticas/enzimología , Lesiones Precancerosas/enzimología , ARN Mensajero/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Regulación hacia Arriba
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA