Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Med Microbiol Immunol ; 212(1): 103-122, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36583790

RESUMEN

The SARS-CoV-2 virus has been rapidly evolving over the time and the genetic variation has led to the generation of Variants of Concerns (VoC), which have shown increased fitness. These VoC viruses contain the key mutations in the spike protein which have allowed better survival and evasion of host defense mechanisms. The D614G mutation in the spike domain is found in the majority of VoC; additionally, the P681R/H mutation at the S1/S2 furin cleavage site junction is also found to be highly conserved in major VoCs; Alpha, Delta, Omicron, and its' current variants. The impact of these genetic alterations of the SARS-CoV-2 VoCs on the host cell entry, transmissibility, and infectivity has not been clearly identified. In our study, Delta and D614G + P681R synthetic double mutant pseudoviruses showed a significant increase in the cell entry, cell-to-cell fusion and infectivity. In contrast, the Omicron and P681H synthetic single mutant pseudoviruses showed TMPRSS2 independent cell entry, less fusion and infectivity as compared to Delta and D614G + P681R double mutants. Addition of exogenous trypsin further enhanced fusion in Delta viruses as compared to Omicron. Furthermore, Delta viruses showed susceptibility to both E64d and Camostat mesylate inhibitors suggesting, that the Delta virus could exploit both endosomal and TMPRSS2 dependent entry pathways as compared to the Omicron virus. Taken together, these results indicate that the D614G and P681R/H mutations in the spike protein are pivotal which might be favoring the VoC replication in different host compartments, and thus allowing a balance of mutation vs selection for better long-term adaptation.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/genética , Mutación
2.
Hum Vaccin Immunother ; 20(1): 2351664, 2024 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-38757508

RESUMEN

Middle East respiratory syndrome coronavirus (MERS-CoV) is a lethal beta-coronavirus that emerged in 2012. The virus is part of the WHO blueprint priority list with a concerning fatality rate of 35%. Scientific efforts are ongoing for the development of vaccines, anti-viral and biotherapeutics, which are majorly directed toward the structural spike protein. However, the ongoing effort is challenging due to conformational instability of the spike protein and the evasion strategy posed by the MERS-CoV. In this study, we have expressed and purified the MERS-CoV pre-fusion spike protein in the Expi293F mammalian expression system. The purified protein was extensively characterized for its biochemical and biophysical properties. Thermal stability analysis showed a melting temperature of 58°C and the protein resisted major structural changes at elevated temperature as revealed by fluorescence spectroscopy and circular dichroism. Immunological assessment of the MERS-CoV spike immunogen in BALB/c mice with AddaVaxTM and Imject alum adjuvants showed elicitation of high titer antibody responses but a more balanced Th1/Th2 response with AddaVaxTM squalene like adjuvant. Together, our results suggest the formation of higher-order trimeric pre-fusion MERS-CoV spike proteins, which were able to induce robust immune responses. The comprehensive characterization of MERS-CoV spike protein warrants a better understanding of MERS spike protein and future vaccine development efforts.


Asunto(s)
Anticuerpos Antivirales , Ratones Endogámicos BALB C , Coronavirus del Síndrome Respiratorio de Oriente Medio , Glicoproteína de la Espiga del Coronavirus , Vacunas Virales , Coronavirus del Síndrome Respiratorio de Oriente Medio/inmunología , Animales , Glicoproteína de la Espiga del Coronavirus/inmunología , Glicoproteína de la Espiga del Coronavirus/genética , Anticuerpos Antivirales/inmunología , Anticuerpos Antivirales/sangre , Vacunas Virales/inmunología , Ratones , Femenino , Infecciones por Coronavirus/prevención & control , Infecciones por Coronavirus/inmunología , Inmunogenicidad Vacunal , Anticuerpos Neutralizantes/inmunología , Anticuerpos Neutralizantes/sangre , Adyuvantes Inmunológicos/administración & dosificación , Adyuvantes de Vacunas , Humanos
3.
3 Biotech ; 13(10): 323, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37663753

RESUMEN

The spike (S) glycoprotein of the SARS-CoV-2 virus binds to the host cell receptor and promotes the virus's entry into the target host cell. This interaction is primed by host cell proteases like furin and TMPRSS2, which act at the S1/S2 and S2´ cleavage sites, respectively. Both cleavage sites have serine or proline residues flanking either the single or polybasic region and were found to be conserved in coronaviruses. Unravelling the effects of these conserved residues on the virus entry and infectivity might facilitate the development of novel therapeutics. Here, we have investigated the role of the conserved serine and proline residues in the SARS-CoV-2 spike mediated entry, fusogenicity, and viral infectivity by using the HIV-1/spike-based pseudovirus system. A conserved serine residue mutation to alanine (S2´S-A) at the S2´ cleavage site resulted in the complete loss of spike cleavage. Exogenous treatment with trypsin or overexpression of TMPRSS2 protease could not rescue the loss of spike cleavage and biological activity. The S2´S-A mutant showed no significant responses against E-64d, TMPRSS2 or other relevant inhibitors. Taken together, serine at the S2´ site in the spike protein was indispensable for spike protein cleavage and virus infectivity. Thus, novel interventions targeting the conserved serine at the S2´ cleavage site should be explored to reduce severe disease caused by SARS-CoV-2-and novel emerging variants. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-023-03749-y.

4.
Int J Biol Macromol ; 119: 962-973, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30077668

RESUMEN

IMPACT (Imprinted and Ancient)-like proteins are known to be regulators of GCN2 (General control non-derepressible 2) kinases involved in translation regulation. Here, we report on cloning and characterization of an IMPACT-like protein, LdIMPACT from Leishmania donovani which harbours two domains. 'RWD domain' at the N-terminal end that mediates GCN2 regulation, while a conserved 'ancient domain' lies at the C-terminal end whose function remains elusive. Interestingly, our observations indicated that LdIMPACT has a novel non-specific nuclease activity. In silico analysis further revealed the resemblance of ancient domain of LdIMPACT to RNase PH domain (known to bind to nucleic acids). The recombinant LdIMPACT exhibited a Mg2+-dependent nuclease activity. Moreover, thermostability and pH stability assays of the protein suggest it to be a stress-responsive protein. Circular dichroism studies elucidated the conformational transitions of the enzyme in response to various temperature and pH conditions which correlated well with the activity profiles. Thus, the current study highlights the structural and functional characteristics of LdIMPACT which interestingly also possesses a novel nuclease activity. With its physiological relevance unresolved, the multifaceted LdIMPACT might therefore lie in a hitherto unknown network, whose perturbation could be an attractive therapeutic approach for treating leishmaniasis.


Asunto(s)
Endonucleasas/metabolismo , Leishmania donovani/metabolismo , Proteínas Protozoarias/metabolismo , Secuencia de Aminoácidos , Clonación Molecular , Endonucleasas/química , Endonucleasas/genética , Activación Enzimática , Concentración de Iones de Hidrógeno , Iones , Cinética , Leishmania donovani/clasificación , Leishmania donovani/enzimología , Leishmania donovani/genética , Metales/química , Modelos Moleculares , Filogenia , Conformación Proteica , Dominios Proteicos , Proteínas Protozoarias/química , Proteínas Protozoarias/genética , Análisis de Secuencia de ADN , Relación Estructura-Actividad , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA