Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
PLoS Genet ; 17(2): e1009359, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33556113

RESUMEN

Vesicular trafficking defects, particularly those in the autophagolysosomal system, have been strongly implicated in the pathogenesis of Parkinson's disease and related α-synucleinopathies. However, mechanisms mediating dysfunction of membrane trafficking remain incompletely understood. Using a Drosophila model of α-synuclein neurotoxicity with widespread and robust pathology, we find that human α-synuclein expression impairs autophagic flux in aging adult neurons. Genetic destabilization of the actin cytoskeleton rescues F-actin accumulation, promotes autophagosome clearance, normalizes the autophagolysosomal system, and rescues neurotoxicity in α-synuclein transgenic animals through an Arp2/3 dependent mechanism. Similarly, mitophagosomes accumulate in human α-synuclein-expressing neurons, and reversal of excessive actin stabilization promotes both clearance of these abnormal mitochondria-containing organelles and rescue of mitochondrial dysfunction. These results suggest that Arp2/3 dependent actin cytoskeleton stabilization mediates autophagic and mitophagic dysfunction and implicate failure of autophagosome maturation as a pathological mechanism in Parkinson's disease and related α-synucleinopathies.


Asunto(s)
Actinas/metabolismo , Autofagosomas/metabolismo , Drosophila melanogaster/metabolismo , Mitocondrias/metabolismo , alfa-Sinucleína/metabolismo , Citoesqueleto de Actina/metabolismo , Complejo 2-3 Proteico Relacionado con la Actina/genética , Complejo 2-3 Proteico Relacionado con la Actina/metabolismo , Envejecimiento , Animales , Animales Modificados Genéticamente , Autofagosomas/genética , Autofagia/genética , Modelos Animales de Enfermedad , Drosophila melanogaster/genética , Humanos , Microscopía Electrónica de Transmisión , Mitocondrias/ultraestructura , Neuronas/metabolismo , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/metabolismo , alfa-Sinucleína/genética
2.
Proc Natl Acad Sci U S A ; 117(52): 33608-33618, 2020 12 29.
Artículo en Inglés | MEDLINE | ID: mdl-33318181

RESUMEN

Mitochondrial and metabolic dysfunction are often implicated in neurological disease, but effective mechanism-based therapies remain elusive. We performed a genome-scale forward genetic screen in a Drosophila model of tauopathy, a class of neurodegenerative disorders characterized by the accumulation of the protein tau, and identified manipulation of the B-vitamin biotin as a potential therapeutic approach in tauopathy. We show that tau transgenic flies have an innate biotin deficiency due to tau-mediated relaxation of chromatin and consequent aberrant expression of multiple biotin-related genes, disrupting both carboxylase and mitochondrial function. Biotin depletion alone causes mitochondrial pathology and neurodegeneration in both flies and human neurons, implicating mitochondrial dysfunction as a mechanism in biotin deficiency. Finally, carboxylase biotin levels are reduced in mammalian tauopathies, including brains of human Alzheimer's disease patients. These results provide insight into pathogenic mechanisms of human biotin deficiency, the resulting effects on neuronal health, and a potential therapeutic pathway in the treatment of tau-mediated neurotoxicity.


Asunto(s)
Biotina/farmacología , Mitocondrias/patología , Neurotoxinas/toxicidad , Tauopatías/patología , Enfermedad de Alzheimer/patología , Animales , Animales Modificados Genéticamente , Biotina/deficiencia , Biotinilación , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Drosophila melanogaster/genética , Drosophila melanogaster/fisiología , Femenino , Regulación de la Expresión Génica , Pruebas Genéticas , Humanos , Masculino , Ratones , Mitocondrias/efectos de los fármacos , Degeneración Nerviosa/patología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Neuronas/patología
3.
Proc Natl Acad Sci U S A ; 114(11): E2253-E2262, 2017 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-28246328

RESUMEN

Members of the synaptic vesicle glycoprotein 2 (SV2) family of proteins are involved in synaptic function throughout the brain. The ubiquitously expressed SV2A has been widely implicated in epilepsy, although SV2C with its restricted basal ganglia distribution is poorly characterized. SV2C is emerging as a potentially relevant protein in Parkinson disease (PD), because it is a genetic modifier of sensitivity to l-DOPA and of nicotine neuroprotection in PD. Here we identify SV2C as a mediator of dopamine homeostasis and report that disrupted expression of SV2C within the basal ganglia is a pathological feature of PD. Genetic deletion of SV2C leads to reduced dopamine release in the dorsal striatum as measured by fast-scan cyclic voltammetry, reduced striatal dopamine content, disrupted α-synuclein expression, deficits in motor function, and alterations in neurochemical effects of nicotine. Furthermore, SV2C expression is dramatically altered in postmortem brain tissue from PD cases but not in Alzheimer disease, progressive supranuclear palsy, or multiple system atrophy. This disruption was paralleled in mice overexpressing mutated α-synuclein. These data establish SV2C as a mediator of dopamine neuron function and suggest that SV2C disruption is a unique feature of PD that likely contributes to dopaminergic dysfunction.


Asunto(s)
Dopamina/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Enfermedad de Parkinson/metabolismo , Vesículas Sinápticas/metabolismo , Anciano , Anciano de 80 o más Años , Animales , Ganglios Basales/metabolismo , Biomarcadores , Modelos Animales de Enfermedad , Neuronas Dopaminérgicas/efectos de los fármacos , Neuronas Dopaminérgicas/metabolismo , Femenino , Eliminación de Gen , Expresión Génica , Humanos , Locomoción , Masculino , Glicoproteínas de Membrana/genética , Ratones , Ratones Noqueados , Ratones Transgénicos , Persona de Mediana Edad , Proteínas del Tejido Nervioso/genética , Nicotina/metabolismo , Nicotina/farmacología , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/fisiopatología , Unión Proteica , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo
4.
Hum Mol Genet ; 24(18): 5299-312, 2015 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-26123485

RESUMEN

Preferential dysfunction/degeneration of midbrain substantia nigra pars compacta (SNpc) dopaminergic (DA) neurons contributes to the main movement symptoms manifested in Parkinson's disease (PD). Although the Leucine-rich repeat kinase 2 (LRRK2) G2019S missense mutation (LRRK2 G2019S) is the most common causative genetic factor linked to PD, the effects of LRRK2 G2019S on the function and survival of SNpc DA neurons are poorly understood. Using a binary gene expression system, we generated transgenic mice expressing either wild-type human LRRK2 (WT mice) or the LRRK2 G2019S mutation (G2019S mice) selectively in the midbrain DA neurons. Here we show that overexpression of LRRK2 G2019S did not induce overt motor abnormalities or substantial SNpc DA neuron loss. However, the LRRK2 G2019S mutation impaired dopamine homeostasis and release in aged mice. This reduction in dopamine content/release coincided with the degeneration of DA axon terminals and decreased expression of DA neuron-enriched genes tyrosine hydroxylase (TH), vesicular monoamine transporter 2, dopamine transporter and aldehyde dehydrogenase 1. These factors are responsible for dopamine synthesis, transport and degradation, and their expression is regulated by transcription factor paired-like homeodomain 3 (PITX3). Levels of Pitx3 mRNA and protein were similarly decreased in the SNpc DA neurons of aged G2019S mice. Together, these findings suggest that PITX3-dependent transcription regulation could be one of the many potential mechanisms by which LRRK2 G2019S acts in SNpc DA neurons, resulting in downregulation of its downstream target genes critical for dopamine homeostasis and release.


Asunto(s)
Dopamina/metabolismo , Neuronas Dopaminérgicas/metabolismo , Regulación de la Expresión Génica , Mutación Missense , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Factores de Edad , Animales , Conducta Animal , Modelos Animales de Enfermedad , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Humanos , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina , Mesencéfalo/metabolismo , Mesencéfalo/patología , Ratones , Ratones Transgénicos , Actividad Motora , Degeneración Nerviosa/genética , Enfermedad de Parkinson/patología , Sustancia Negra/metabolismo , Sustancia Negra/patología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
5.
Eur J Neurosci ; 45(1): 20-33, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27520881

RESUMEN

Dopamine was first identified as a neurotransmitter localized to the midbrain over 50 years ago. The dopamine transporter (DAT; SLC6A3) and the vesicular monoamine transporter 2 (VMAT2; SLC18A2) are regulators of dopamine homeostasis in the presynaptic neuron. DAT transports dopamine from the extracellular space into the cytosol of the presynaptic terminal. VMAT2 then packages this cytosolic dopamine into vesicular compartments for subsequent release upon neurotransmission. Thus, DAT and VMAT2 act in concert to move the transmitter efficiently throughout the neuron. Accumulation of dopamine in the neuronal cytosol can trigger oxidative stress and neurotoxicity, suggesting that the proper compartmentalization of dopamine is critical for neuron function and risk of disease. For decades, studies have examined the effects of reduced transporter function in mice (e.g. DAT-KO, VMAT2-KO, VMAT2-deficient). However, we have only recently been able to assess the effects of elevated transporter expression using BAC transgenic methods (DAT-tg, VMAT2-HI mice). Complemented with in vitro work and neurochemical techniques to assess dopamine compartmentalization, a new focus on the importance of transporter proteins as both models of human disease and potential drug targets has emerged. Here, we review the importance of DAT and VMAT2 function in the delicate balance of neuronal dopamine.


Asunto(s)
Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/metabolismo , Dopamina/metabolismo , Neuronas Dopaminérgicas/metabolismo , Terminales Presinápticos/metabolismo , Animales , Humanos , Mesencéfalo/metabolismo , Transmisión Sináptica/fisiología
6.
Proc Natl Acad Sci U S A ; 111(27): 9977-82, 2014 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-24979780

RESUMEN

Disruption of neurotransmitter vesicle dynamics (transport, capacity, release) has been implicated in a variety of neurodegenerative and neuropsychiatric conditions. Here, we report a novel mouse model of enhanced vesicular function via bacterial artificial chromosome (BAC)-mediated overexpression of the vesicular monoamine transporter 2 (VMAT2; Slc18a2). A twofold increase in vesicular transport enhances the vesicular capacity for dopamine (56%), dopamine vesicle volume (33%), and basal tissue dopamine levels (21%) in the mouse striatum. The elevated vesicular capacity leads to an increase in stimulated dopamine release (84%) and extracellular dopamine levels (44%). VMAT2-overexpressing mice show improved outcomes on anxiety and depressive-like behaviors and increased basal locomotor activity (41%). Finally, these mice exhibit significant protection from neurotoxic insult by the dopaminergic toxicant 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), as measured by reduced dopamine terminal damage and substantia nigra pars compacta cell loss. The increased release of dopamine and neuroprotection from MPTP toxicity in the VMAT2-overexpressing mice suggest that interventions aimed at enhancing vesicular capacity may be of therapeutic benefit in Parkinson disease.


Asunto(s)
Dopamina/metabolismo , Trastornos Parkinsonianos/metabolismo , Proteínas de Transporte Vesicular de Monoaminas/fisiología , 1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina/farmacología , Animales , Conducta Animal , Cromosomas Artificiales Bacterianos , Cuerpo Estriado/metabolismo , Ratones , Ratones Transgénicos , Trastornos Parkinsonianos/patología , Trastornos Parkinsonianos/fisiopatología , Proteínas de Transporte Vesicular de Monoaminas/genética
7.
Front Neurosci ; 15: 731602, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34803581

RESUMEN

Tau is a microtubule-associated protein that stabilizes the neuronal cytoskeleton. In the family of neurodegenerative diseases known as tauopathies, including Alzheimer's disease (AD), frontotemporal dementia (FTD), and chronic traumatic encephalopathy (CTE), abnormal tau aggregation destabilizes microtubule structure, contributing to a cascade of cellular processes leading to neuronal cell death. The gut microbiome has increasingly become a target of neurodegenerative disease research since gut microbiome imbalances have been linked to protein aggregation and inflammation through a bidirectional axis linking the gut and brain. Accordingly, the present study examined tau-mediated changes to gut microbiome composition and immune activation in a Drosophila melanogaster model of human mutant tauopathy. Fecal deposit quantification and gastric emptying time courses suggested an abnormal food distribution and reduced gut motility in tau transgenic flies compared to controls. Tau transgenic flies also showed an increase in gut bacteria colony forming units (CFUs) from diluted fly homogenate, indicating an increased bacterial load. Finally, we showed that tau transgenic flies have a trend towards elevated systemic levels of antimicrobial peptides targeting gram-negative bacteria using qPCR, suggesting an enhanced innate immune response to bacterial insult. These data demonstrate qualifiable and quantifiable gut microbial and innate immune responses to tauopathy. Furthermore, these results provide a framework for future studies targeting the gut microbiome as a modifier of neurodegenerative disease.

8.
Mol Neurodegener ; 16(1): 33, 2021 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-34030727

RESUMEN

BACKGROUND: Mutations in LRRK2 are the most common cause of familial Parkinson's disease and typically cause disease in the context of abnormal aggregation and deposition of α-synuclein within affected brain tissue. METHODS: We combine genetic analysis of Lrrk-associated toxicity in a penetrant Drosophila model of wild type human α-synuclein neurotoxicity with biochemical analyses and modeling of LRRK2 toxicity in human neurons and transgenic mouse models. RESULTS: We demonstrate that Lrrk and α-synuclein interact to promote neuronal degeneration through convergent effects on the actin cytoskeleton and downstream dysregulation of mitochondrial dynamics and function. We find specifically that monomers and dimers of Lrrk efficiently sever actin and promote normal actin dynamics in vivo. Oligomerization of Lrrk, which is promoted by dominant Parkinson's disease-causing mutations, reduces actin severing activity in vitro and promotes excess stabilization of F-actin in vivo. Importantly, a clinically protective Lrrk mutant reduces oligomerization and α-synuclein neurotoxicity. CONCLUSIONS: Our findings provide a specific mechanistic link between two key molecules in the pathogenesis of Parkinson's disease, α-synuclein and LRRK2, and suggest potential new approaches for therapy development.


Asunto(s)
Actinas/metabolismo , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/metabolismo , Neuronas/metabolismo , Enfermedad de Parkinson/metabolismo , alfa-Sinucleína/toxicidad , Animales , Drosophila , Técnicas de Sustitución del Gen , Humanos , Ratones , Ratones Endogámicos C57BL , Neuronas/patología , Enfermedad de Parkinson/patología
9.
Genes Brain Behav ; 19(5): e12634, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-31898856

RESUMEN

A subset of people exposed to a traumatic event develops post-traumatic stress disorder (PTSD), which is associated with dysregulated fear behavior. Genetic variation in SLC18A2, the gene that encodes vesicular monoamine transporter 2 (VMAT2), has been reported to affect risk for the development of PTSD in humans. Here, we use transgenic mice that express either 5% (VMAT2-LO mice) or 200% (VMAT2-HI mice) of wild-type levels of VMAT2 protein. We report that VMAT2-LO mice have reduced VMAT2 protein in the hippocampus and amygdala, impaired monoaminergic vesicular storage capacity in both the striatum and frontal cortex, decreased monoamine metabolite abundance and a greatly reduced capacity to release dopamine upon stimulation. Furthermore, VMAT2-LO mice showed exaggerated cued and contextual fear expression, altered fear habituation, inability to discriminate threat from safety cues, altered startle response compared with wild-type mice and an anxiogenic-like phenotype, but displayed no deficits in social function. By contrast, VMAT2-HI mice exhibited increased VMAT2 protein throughout the brain, higher vesicular storage capacity and greater dopamine release upon stimulation compared with wild-type controls. Behaviorally, VMAT2-HI mice were similar to wild-type mice in most assays, with some evidence of a reduced anxiety-like responses. Together, these data show that presynaptic monoamine function mediates PTSD-like outcomes in our mouse model, and suggest a causal link between reduced VMAT2 expression and fear behavior, consistent with the correlational relationship between VMAT2 genotype and PTSD risk in humans. Targeting this system is a potential strategy for the development of pharmacotherapies for disorders like PTSD.


Asunto(s)
Miedo , Trastornos por Estrés Postraumático/genética , Proteínas de Transporte Vesicular de Monoaminas/genética , Amígdala del Cerebelo/metabolismo , Amígdala del Cerebelo/fisiología , Animales , Señales (Psicología) , Dopamina/metabolismo , Femenino , Habituación Psicofisiológica , Hipocampo/metabolismo , Hipocampo/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Conducta Social , Proteínas de Transporte Vesicular de Monoaminas/metabolismo
10.
J Chem Neuroanat ; 83-84: 82-90, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27836486

RESUMEN

Vesicular monoamine transporter 2 (VMAT2, SLC18A2) is a transmembrane transporter protein that packages dopamine, serotonin, norepinephrine, and histamine into vesicles in preparation for neurotransmitter release from the presynaptic neuron. VMAT2 function and related vesicle dynamics have been linked to susceptibility to oxidative stress, exogenous toxicants, and Parkinson's disease. To address a recent depletion of commonly used antibodies to VMAT2, we generated and characterized a novel rabbit polyclonal antibody generated against a 19 amino acid epitope corresponding to an antigenic sequence within the C-terminal tail of mouse VMAT2. We used genetic models of altered VMAT2 expression to demonstrate that the antibody specifically recognizes VMAT2 and localizes to synaptic vesicles. Furthermore, immunohistochemical labeling using this VMAT2 antibody produces immunoreactivity that is consistent with expected VMAT2 regional distribution. We show the distribution of VMAT2 in monoaminergic brain regions of mouse brain, notably the midbrain, striatum, olfactory tubercle, dopaminergic paraventricular nuclei, tuberomammillary nucleus, raphe nucleus, and locus coeruleus. Normal neurotransmitter vesicle dynamics are critical for proper health and functioning of the nervous system, and this well-characterized VMAT2 antibody will be a useful tool in studying neurodegenerative and neuropsychiatric conditions characterized by vesicular dysfunction.


Asunto(s)
Química Encefálica , Encéfalo/metabolismo , Proteínas de Transporte Vesicular de Monoaminas/biosíntesis , Animales , Anticuerpos , Especificidad de Anticuerpos , Inmunohistoquímica , Ratones , Conejos , Proteínas de Transporte Vesicular de Monoaminas/análisis
11.
Toxicol Sci ; 153(1): 79-88, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27287315

RESUMEN

The vesicular monoamine transporter 2 (VMAT2) packages neurotransmitters for release during neurotransmission and sequesters toxicants into vesicles to prevent neuronal damage. In mice, low VMAT2 levels causes catecholaminergic cell loss and behaviors resembling Parkinson's disease, while high levels of VMAT2 increase dopamine release and protect against dopaminergic toxicants. However, comparisons across these VMAT2 mouse genotypes were impossible due to the differing genetic background strains of the animals. Following back-crossing to a C57BL/6 line, we confirmed that mice with approximately 95% lower VMAT2 levels compared with wild-type (VMAT2-LO) display significantly reduced vesicular uptake, progressive dopaminergic terminal loss with aging, and exacerbated 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) toxicity. Conversely, VMAT2-overexpressing mice (VMAT2-HI) are protected from the loss of striatal terminals following MPTP treatment. We also provide evidence that enhanced vesicular filling in the VMAT2-HI mice modifies the handling of newly synthesized dopamine, indicated by changes in indirect measures of extracellular dopamine clearance. These results confirm the role of VMAT2 in the protection of vulnerable nigrostriatal dopamine neurons and may also provide new insight into the side effects of L-DOPA treatments in Parkinson's disease.


Asunto(s)
Cuerpo Estriado/metabolismo , Dopamina/metabolismo , Intoxicación por MPTP/metabolismo , Proteínas de Transporte Vesicular de Monoaminas/metabolismo , Animales , Levodopa/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteínas de Transporte Vesicular de Monoaminas/genética
12.
Exp Neurol ; 275 Pt 1: 17-24, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26428905

RESUMEN

We previously demonstrated that mice with reduced expression of the vesicular monoamine transporter 2 (VMAT2 LO) undergo age-related degeneration of the catecholamine-producing neurons of the substantia nigra pars compacta and locus ceruleus and exhibit motor disturbances and depressive-like behavior. In this work, we investigated the effects of reduced vesicular transport on the function and viability of serotonin neurons in these mice. Adult (4-6 months of age), VMAT2 LO mice exhibit dramatically reduced (90%) serotonin release capacity, as measured by fast scan cyclic voltammetry. We observed changes in serotonin receptor responsivity in in vivo pharmacological assays. Aged (months) VMAT2 LO mice exhibited abolished 5-HT1A autoreceptor sensitivity, as determined by 8-OH-DPAT (0.1 mg/kg) induction of hypothermia. When challenged with the 5HT2 agonist, 2,5-dimethoxy-4-iodoamphetamine (1 mg/kg), VMAT2 LO mice exhibited a marked increase (50%) in head twitch responses. We observed sparing of serotonergic terminals in aged mice (18-24 months) throughout the forebrain by SERT immunohistochemistry and [(3)H]-paroxetine binding in striatal homogenates of aged VMAT2 LO mice. In contrast to their loss of catecholamine neurons of the substantia nigra and locus ceruleus, aged VMAT2 LO mice do not exhibit a change in the number of serotonergic (TPH2+) neurons within the dorsal raphe, as measured by unbiased stereology at 26-30 months. Collectively, these data indicate that reduced vesicular monoamine transport significantly disrupts serotonergic signaling, but does not drive degeneration of serotonin neurons.


Asunto(s)
Cuerpo Estriado/metabolismo , Neuronas/metabolismo , Receptor de Serotonina 5-HT1A/metabolismo , Serotonina/metabolismo , Proteínas de Transporte Vesicular de Monoaminas/metabolismo , 8-Hidroxi-2-(di-n-propilamino)tetralin/farmacología , Anfetaminas/farmacología , Animales , Ratones , Ratones Transgénicos , Degeneración Nerviosa/metabolismo , Degeneración Nerviosa/patología , Neuronas/patología , Receptor de Serotonina 5-HT1A/genética , Proteínas de Transporte Vesicular de Monoaminas/genética
13.
ACS Chem Neurosci ; 7(10): 1364-1373, 2016 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-27501345

RESUMEN

Drugs of abuse induce sensitization, which is defined as enhanced response to additional drug following a period of withdrawal. Sensitization occurs in both humans and animal models of drug reinforcement and contributes substantially to the addictive nature of drugs of abuse, because it is thought to represent enhanced motivational wanting for drug. The ventral pallidum, a key member of the reward pathway, contributes to behaviors associated with reward, such as sensitization. Dopamine inputs to the ventral pallidum have not been directly characterized. Here we provide anatomical, neurochemical, and behavioral evidence demonstrating that dopamine terminals in the ventral pallidum contribute to reward in mice. We report subregional differences in dopamine release, measured by ex vivo fast-scan cyclic voltammetry: rostral ventral pallidum exhibits increased dopamine release and uptake compared with caudal ventral pallidum, which is correlated with tissue expression of dopaminergic proteins. We then subjected mice to a methamphetamine-sensitization protocol to investigate the contribution of dopaminergic projections to the region in reward related behavior. Methamphetamine-sensitized animals displayed a 508% and 307% increase in baseline dopamine release in the rostral and caudal ventral pallidum, respectively. Augmented dopamine release in the rostral ventral pallidum was significantly correlated with sensitized locomotor activity. Moreover, this presynaptic dopaminergic plasticity occurred only in the ventral pallidum and not in the ventral or dorsal striatum, suggesting that dopamine release in the ventral pallidum may be integrally important to drug-induced sensitization.


Asunto(s)
Trastornos Relacionados con Anfetaminas/metabolismo , Dopaminérgicos/farmacología , Dopamina/metabolismo , Globo Pálido/efectos de los fármacos , Globo Pálido/metabolismo , Metanfetamina/farmacología , Trastornos Relacionados con Anfetaminas/patología , Animales , Estimulantes del Sistema Nervioso Central/farmacología , Modelos Animales de Enfermedad , Globo Pálido/patología , Inmunohistoquímica , Masculino , Ratones Endogámicos C57BL , Actividad Motora/efectos de los fármacos , Actividad Motora/fisiología , Plasticidad Neuronal/efectos de los fármacos , Plasticidad Neuronal/fisiología , Terminales Presinápticos/efectos de los fármacos , Terminales Presinápticos/metabolismo , Terminales Presinápticos/patología
14.
Parkinsons Dis ; 2015: 812532, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26345149

RESUMEN

Epidemiological studies indicate exposures to the herbicide paraquat (PQ) and fungicide maneb (MB) are associated with increased risk of Parkinson's disease (PD). Oxidative stress appears to be a premier mechanism that underlies damage to the nigrostriatal dopamine system in PD and pesticide exposure. Enhanced oxidative stress leads to lipid peroxidation and production of reactive aldehydes; therefore, we conducted proteomic analyses to identify carbonylated proteins in the striatum and cortex of pesticide-treated mice in order to elucidate possible mechanisms of toxicity. Male C57BL/6J mice were treated biweekly for 6 weeks with saline, PQ (10 mg/kg), MB (30 mg/kg), or the combination of PQ and MB (PQMB). Treatments resulted in significant behavioral alterations in all treated mice and depleted striatal dopamine in PQMB mice. Distinct differences in 4-hydroxynonenal-modified proteins were observed in the striatum and cortex. Proteomic analyses identified carbonylated proteins and peptides from the cortex and striatum, and pathway analyses revealed significant enrichment in a variety of KEGG pathways. Further analysis showed enrichment in proteins of the actin cytoskeleton in treated samples, but not in saline controls. These data indicate that treatment-related effects on cytoskeletal proteins could alter proper synaptic function, thereby resulting in impaired neuronal function and even neurodegeneration.

15.
ACS Chem Neurosci ; 6(5): 790-9, 2015 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-25746685

RESUMEN

The psychostimulant methamphetamine (METH) is highly addictive and neurotoxic to dopamine terminals. METH toxicity has been suggested to be due to the release and accumulation of dopamine in the cytosol of these terminals. The vesicular monoamine transporter 2 (VMAT2; SLC18A2) is a critical mediator of dopamine handling. Mice overexpressing VMAT2 (VMAT2-HI) have an increased vesicular capacity to store dopamine, thus augmenting striatal dopamine levels and dopamine release in the striatum. Based on the altered compartmentalization of intracellular dopamine in the VMAT2-HI mice, we assessed whether enhanced vesicular function was capable of reducing METH-induced damage to the striatal dopamine system. While wildtype mice show significant losses in striatal levels of the dopamine transporter (65% loss) and tyrosine hydroxylase (46% loss) following a 4 × 10 mg/kg METH dosing regimen, VMAT2-HI mice were protected from this damage. VMAT2-HI mice were also spared from the inflammatory response that follows METH treatment, showing an increase in astroglial markers that was approximately one-third of that of wildtype animals (117% vs 36% increase in GFAP, wildtype vs VMAT2-HI). Further analysis also showed that elevated VMAT2 level does not alter the ability of METH to increase core body temperature, a mechanism integral to the toxicity of the drug. Finally, the VMAT2-HI mice showed no difference from wildtype littermates on both METH-induced conditioned place preference and in METH-induced locomotor activity (1 mg/kg METH). These results demonstrate that elevated VMAT2 protects against METH toxicity without enhancing the rewarding effects of the drug. Since the VMAT2-HI mice are protected from METH despite higher basal dopamine levels, this study suggests that METH toxicity depends more on the proper compartmentalization of synaptic dopamine than on the absolute amount of dopamine in the brain.


Asunto(s)
Estimulantes del Sistema Nervioso Central/toxicidad , Metanfetamina/toxicidad , Proteínas de Transporte Vesicular de Monoaminas/metabolismo , Animales , Western Blotting , Estimulantes del Sistema Nervioso Central/metabolismo , Inmunohistoquímica , Masculino , Metanfetamina/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos
16.
Expert Rev Neurother ; 14(10): 1115-7, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25220836

RESUMEN

Despite a movement away from dopamine-focused Parkinson's disease (PD) research, a recent surge of evidence now suggests that altered vesicular storage of dopamine may contribute to the demise of the nigral neurons in this disease. Human studies demonstrate that the vesicular monoamine transporter 2 (VMAT2; SLC18A2) is dysfunctional in PD brain. Moreover, studies with transgenic mice suggest that there is an untapped reserve capacity of the dopamine vesicle that could be unbridled by increasing VMAT2 function. Therapeutic manipulation of VMAT2 level or function has the potential to improve efficacy of dopamine derived from administered levodopa, increase dopamine neurotransmission from remaining midbrain dopamine neurons and protect against neurotoxic insults. Thus, the development of drugs to enhance the storage of release of dopamine may be a fruitful avenue of research for PD.


Asunto(s)
Dopamina/metabolismo , Levodopa/uso terapéutico , Enfermedad de Parkinson/tratamiento farmacológico , Proteínas de Transporte Vesicular de Monoaminas/metabolismo , Animales , Modelos Animales de Enfermedad , Humanos , Ratones , Neuronas/efectos de los fármacos , Enfermedad de Parkinson/fisiopatología , Proteínas de Transporte Vesicular de Monoaminas/genética
17.
Brain Res ; 1433: 62-8, 2012 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-22137562

RESUMEN

The retrotrapezoid nucleus (RTN) is thought to regulate breathing in response to changes in blood carbon dioxide (CO(2)), and to make a vital contribution to respiratory drive, especially during sleep. However, cells in the female RTN fail to upregulate c-fos in response to low level CO(2) exposure, while cells in the male RTN have a robust upregulation of c-fos in response to low level CO(2) exposure. In this study, we examined the possibility that the female RTN has a higher threshold for c-fos upregulation in response to CO(2). Following exposure of Fos-Tau-LacZ (FTL) transgenic mice to 10% CO(2), c-fos was upregulated in just as many cells in the female as in the male RTN. In addition, the male RTN responded equivalently to 5% and 10% CO(2), consistent with a lack of a dose response to CO(2) in the male RTN. Cells in the nearby facial nucleus upregulated c-fos in the same number of cells regardless of sex or gas exposure, confirming that the sex difference in the RTN is unique to that nucleus. We propose that the male and female RTN upregulate c-fos differently in response to CO(2) due to differences in the transcriptional regulation by estrogens of genes that encode proteins related to neuronal excitability or specifically related to central chemoreception, such as potassium channels. These findings could have clinical relevance to sleep related breathing disorders that disproportionately affect males, including the sudden infant death syndrome and sleep apnea.


Asunto(s)
Dióxido de Carbono/administración & dosificación , Células Quimiorreceptoras/metabolismo , Proteínas Proto-Oncogénicas c-fos/metabolismo , Centro Respiratorio/metabolismo , Regulación hacia Arriba/fisiología , Administración por Inhalación , Animales , Dióxido de Carbono/química , Células Quimiorreceptoras/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Centro Respiratorio/efectos de los fármacos , Mecánica Respiratoria/efectos de los fármacos , Mecánica Respiratoria/fisiología , Factores Sexuales , Regulación hacia Arriba/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA