Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
NPJ Breast Cancer ; 10(1): 3, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-38182588

RESUMEN

Circulating tumour DNA (ctDNA) detection via liquid biopsy is an emerging alternative to tissue biopsy, but its potential in treatment response monitoring and prognosis in triple negative breast cancer (TNBC) is not yet well understood. Here we determined the prevalence of actionable mutations detectable in ctDNA using a clinically validated cancer gene panel assay in patients with TNBC, without recurrence at the time of study entry. Sequencing of plasma DNA and validation of variants from 130 TNBC patients collected within 7 months of primary treatment completion revealed that 7.7% had detectable residual disease with a hotspot panel. Among neoadjuvant treated patients, we observed a trend where patients with incomplete pathologic response and positive ctDNA within 7 months of treatment completion were at much higher risk of reduced progression free survival. We propose that a high risk subset of early TNBC patients treated in neoadjuvant therapy protocols may be identifiable by combining tissue response and sensitive ctDNA detection.

2.
Nat Med ; 30(6): 1655-1666, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38877116

RESUMEN

In solid tumor oncology, circulating tumor DNA (ctDNA) is poised to transform care through accurate assessment of minimal residual disease (MRD) and therapeutic response monitoring. To overcome the sparsity of ctDNA fragments in low tumor fraction (TF) settings and increase MRD sensitivity, we previously leveraged genome-wide mutational integration through plasma whole-genome sequencing (WGS). Here we now introduce MRD-EDGE, a machine-learning-guided WGS ctDNA single-nucleotide variant (SNV) and copy-number variant (CNV) detection platform designed to increase signal enrichment. MRD-EDGESNV uses deep learning and a ctDNA-specific feature space to increase SNV signal-to-noise enrichment in WGS by ~300× compared to previous WGS error suppression. MRD-EDGECNV also reduces the degree of aneuploidy needed for ultrasensitive CNV detection through WGS from 1 Gb to 200 Mb, vastly expanding its applicability within solid tumors. We harness the improved performance to identify MRD following surgery in multiple cancer types, track changes in TF in response to neoadjuvant immunotherapy in lung cancer and demonstrate ctDNA shedding in precancerous colorectal adenomas. Finally, the radical signal-to-noise enrichment in MRD-EDGESNV enables plasma-only (non-tumor-informed) disease monitoring in advanced melanoma and lung cancer, yielding clinically informative TF monitoring for patients on immune-checkpoint inhibition.


Asunto(s)
ADN Tumoral Circulante , Variaciones en el Número de Copia de ADN , Aprendizaje Automático , Neoplasia Residual , Carga Tumoral , Humanos , ADN Tumoral Circulante/genética , ADN Tumoral Circulante/sangre , Neoplasia Residual/genética , Secuenciación Completa del Genoma , Neoplasias/genética , Neoplasias/sangre , Neoplasias/terapia , Neoplasias/patología , Polimorfismo de Nucleótido Simple , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/sangre , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/sangre , Neoplasias Colorrectales/patología , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/sangre , Neoplasias Pulmonares/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA