Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 119(45): e2116167119, 2022 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-36322767

RESUMEN

How cells adjust their growth to the spatial and mechanical constraints of their surrounding environment is central to many aspects of biology. Here, we examined how extracellular matrix (ECM) rigidity affects cell division. We found that cells divide more rapidly when cultured on rigid substrates. While we observed no effect of ECM rigidity on rounding or postmitotic spreading duration, we found that changes in matrix stiffness impact mitosis progression. We noticed that ECM elasticity up-regulates the expression of the linker of nucleoskeleton and cytoskeleton (LINC) complex component SUN2, which in turn promotes metaphase-to-anaphase transition by acting on mitotic spindle formation, whereas when cells adhere to soft ECM, low levels of SUN2 expression perturb astral microtubule organization and delay the onset of anaphase.


Asunto(s)
Citoesqueleto , Matriz Nuclear , Matriz Nuclear/metabolismo , Citoesqueleto/metabolismo , Microtúbulos/metabolismo , Mitosis , Matriz Extracelular , Huso Acromático , Anafase
2.
Int J Mol Sci ; 23(10)2022 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-35628350

RESUMEN

Hypoxia and inflammation play a major role in revascularization following ischemia. Sildenafil inhibits phosphodiesterase-5, increases intracellular cGMP and induces revascularization through a pathway which remains incompletely understood. Thus, we investigated the effect of sildenafil on post-ischemic revascularization. The left femoral artery was ligated in control and sildenafil-treated (25 mg/kg per day) rats. Vascular density was evaluated and expressed as the left/right leg (L/R) ratio. In control rats, L/R ratio was 33 ± 2% and 54 ± 9%, at 7- and 21-days post-ligation, respectively, and was significantly increased in sildenafil-treated rats to 47 ± 4% and 128 ± 11%, respectively. A neutralizing anti-VEGF antibody significantly decreased vascular density (by 0.48-fold) in control without effect in sildenafil-treated animals. Blood flow and arteriolar density followed the same pattern. In the ischemic leg, HIF-1α and VEGF expression levels increased in control, but not in sildenafil-treated rats, suggesting that sildenafil did not induce angiogenesis. PI3-kinase, Akt and eNOS increased after 7 days, with down-regulation after 21 days. Sildenafil induced outward remodeling or arteriogenesis in mesenteric resistance arteries in association with eNOS protein activation. We conclude that sildenafil treatment increased tissue blood flow and arteriogenesis independently of VEGF, but in association with PI3-kinase, Akt and eNOS activation.


Asunto(s)
Miembro Posterior , Isquemia , Óxido Nítrico Sintasa de Tipo III , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Citrato de Sildenafil , Animales , Miembro Posterior/irrigación sanguínea , Miembro Posterior/efectos de los fármacos , Miembro Posterior/metabolismo , Isquemia/tratamiento farmacológico , Óxido Nítrico Sintasa de Tipo III/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas , Transducción de Señal , Citrato de Sildenafil/farmacología , Factor A de Crecimiento Endotelial Vascular/metabolismo
3.
Am J Hum Genet ; 102(1): 133-141, 2018 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-29304371

RESUMEN

Intracranial aneurysms (IAs) are acquired cerebrovascular abnormalities characterized by localized dilation and wall thinning in intracranial arteries, possibly leading to subarachnoid hemorrhage and severe outcome in case of rupture. Here, we identified one rare nonsense variant (c.1378A>T) in the last exon of ANGPTL6 (Angiopoietin-Like 6)-which encodes a circulating pro-angiogenic factor mainly secreted from the liver-shared by the four tested affected members of a large pedigree with multiple IA-affected case subjects. We showed a 50% reduction of ANGPTL6 serum concentration in individuals heterozygous for the c.1378A>T allele (p.Lys460Ter) compared to relatives homozygous for the normal allele, probably due to the non-secretion of the truncated protein produced by the c.1378A>T transcripts. Sequencing ANGPTL6 in a series of 94 additional index case subjects with familial IA identified three other rare coding variants in five case subjects. Overall, we detected a significant enrichment (p = 0.023) in rare coding variants within this gene among the 95 index case subjects with familial IA, compared to a reference population of 404 individuals with French ancestry. Among the 6 recruited families, 12 out of 13 (92%) individuals carrying IA also carry such variants in ANGPTL6, versus 15 out of 41 (37%) unaffected ones. We observed a higher rate of individuals with a history of high blood pressure among affected versus healthy individuals carrying ANGPTL6 variants, suggesting that ANGPTL6 could trigger cerebrovascular lesions when combined with other risk factors such as hypertension. Altogether, our results indicate that rare coding variants in ANGPTL6 are causally related to familial forms of IA.


Asunto(s)
Proteínas Similares a la Angiopoyetina/genética , Predisposición Genética a la Enfermedad , Aneurisma Intracraneal/genética , Mutación/genética , Sistemas de Lectura Abierta/genética , Proteína 6 similar a la Angiopoyetina , Proteínas Similares a la Angiopoyetina/sangre , Células Cultivadas , Codón sin Sentido/genética , Familia , Femenino , Células HEK293 , Humanos , Aneurisma Intracraneal/sangre , Masculino , Persona de Mediana Edad , Linaje , Factores de Riesgo
4.
Thorax ; 76(4): 326-334, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33542087

RESUMEN

BACKGROUND: Severe asthma is a chronic lung disease characterised by inflammation, airway hyperresponsiveness (AHR) and airway remodelling. The molecular mechanisms underlying uncontrolled airway smooth muscle cell (aSMC) proliferation involved in pulmonary remodelling are still largely unknown. Small G proteins of the Rho family (RhoA, Rac1 and Cdc42) are key regulators of smooth muscle functions and we recently demonstrated that Rac1 is activated in aSMC from allergic mice. The objective of this study was to assess the role of Rac1 in severe asthma-associated airway remodelling. METHODS AND RESULTS: Immunofluorescence analysis in human bronchial biopsies revealed an increased Rac1 activity in aSMC from patients with severe asthma compared with control subjects. Inhibition of Rac1 by EHT1864 showed that Rac1 signalling controlled human aSMC proliferation induced by mitogenic stimuli through the signal transducer and activator of transcription 3 (STAT3) signalling pathway. In vivo, specific deletion of Rac1 in SMC or pharmacological inhibition of Rac1 by nebulisation of NSC23766 prevented AHR and aSMC hyperplasia in a mouse model of severe asthma. Moreover, the Rac1 inhibitor prevented goblet cell hyperplasia and epithelial cell hypertrophy whereas treatment with corticosteroids had less effect. Nebulisation of NSC23766 also decreased eosinophil accumulation in the bronchoalveolar lavage of asthmatic mice. CONCLUSION: This study demonstrates that Rac1 is overactive in the airways of patients with severe asthma and is essential for aSMC proliferation. It also provides evidence that Rac1 is causally involved in AHR and airway remodelling. Rac1 may represent as an interesting target for treating both AHR and airway remodelling of patients with severe asthma.


Asunto(s)
Remodelación de las Vías Aéreas (Respiratorias) , Asma/metabolismo , Miocitos del Músculo Liso/metabolismo , Hipersensibilidad Respiratoria , Proteína de Unión al GTP rac1/metabolismo , Corticoesteroides/farmacología , Aminoquinolinas/administración & dosificación , Aminoquinolinas/farmacología , Animales , Biopsia , Líquido del Lavado Bronquioalveolar/citología , Estudios de Casos y Controles , Proliferación Celular , Modelos Animales de Enfermedad , Eosinófilos/metabolismo , Células Caliciformes/metabolismo , Humanos , Ratones , Pirimidinas/administración & dosificación , Pirimidinas/farmacología , Factor de Transcripción STAT3/metabolismo , Transducción de Señal
5.
J Neurol Neurosurg Psychiatry ; 92(2): 122-128, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33097563

RESUMEN

BACKGROUND AND PURPOSE: The ever-growing availability of imaging led to increasing incidentally discovered unruptured intracranial aneurysms (UIAs). We leveraged machine-learning techniques and advanced statistical methods to provide new insights into rupture intracranial aneurysm (RIA) risks. METHODS: We analysed the characteristics of 2505 patients with intracranial aneurysms (IA) discovered between 2016 and 2019. Baseline characteristics, familial history of IA, tobacco and alcohol consumption, pharmacological treatments before the IA diagnosis, cardiovascular risk factors and comorbidities, headaches, allergy and atopy, IA location, absolute IA size and adjusted size ratio (aSR) were analysed with a multivariable logistic regression (MLR) model. A random forest (RF) method globally assessed the risk factors and evaluated the predictive capacity of a multivariate model. RESULTS: Among 994 patients with RIA (39.7%) and 1511 patients with UIA (60.3 %), the MLR showed that IA location appeared to be the most significant factor associated with RIA (OR, 95% CI: internal carotid artery, reference; middle cerebral artery, 2.72, 2.02-3.58; anterior cerebral artery, 4.99, 3.61-6.92; posterior circulation arteries, 6.05, 4.41-8.33). Size and aSR were not significant factors associated with RIA in the MLR model and antiplatelet-treatment intake patients were less likely to have RIA (OR: 0.74; 95% CI: 0.55-0.98). IA location, age, following by aSR were the best predictors of RIA using the RF model. CONCLUSIONS: The location of IA is the most consistent parameter associated with RIA. The use of 'artificial intelligence' RF helps to re-evaluate the contribution and selection of each risk factor in the multivariate model.


Asunto(s)
Aneurisma Roto/etiología , Aneurisma Intracraneal/complicaciones , Factores de Edad , Anciano , Algoritmos , Aneurisma Roto/prevención & control , Femenino , Humanos , Aneurisma Intracraneal/diagnóstico por imagen , Aneurisma Intracraneal/patología , Aprendizaje Automático , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Neuroimagen , Factores de Riesgo , Tomografía Computarizada por Rayos X
6.
Physiol Rev ; 93(4): 1659-720, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24137019

RESUMEN

Small G proteins exist in eukaryotes from yeast to human and constitute the Ras superfamily comprising more than 100 members. This superfamily is structurally classified into five families: the Ras, Rho, Rab, Arf, and Ran families that control a wide variety of cell and biological functions through highly coordinated regulation processes. Increasing evidence has accumulated to identify small G proteins and their regulators as key players of the cardiovascular physiology that control a large panel of cardiac (heart rhythm, contraction, hypertrophy) and vascular functions (angiogenesis, vascular permeability, vasoconstriction). Indeed, basal Ras protein activity is required for homeostatic functions in physiological conditions, but sustained overactivation of Ras proteins or spatiotemporal dysregulation of Ras signaling pathways has pathological consequences in the cardiovascular system. The primary object of this review is to provide a comprehensive overview of the current progress in our understanding of the role of small G proteins and their regulators in cardiovascular physiology and pathologies.


Asunto(s)
Enfermedades Cardiovasculares/fisiopatología , Fenómenos Fisiológicos Cardiovasculares , Proteínas de Unión al GTP Monoméricas/fisiología , Animales , Humanos , Modelos Animales , Proteínas de Unión al GTP Monoméricas/química , Transducción de Señal/fisiología , Proteínas ras/fisiología
7.
Eur Heart J ; 40(37): 3081-3094, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31114854

RESUMEN

AIMS: The Brugada syndrome (BrS) is an inherited cardiac disorder predisposing to ventricular arrhythmias. Despite considerable efforts, its genetic basis and cellular mechanisms remain largely unknown. The objective of this study was to identify a new susceptibility gene for BrS through familial investigation. METHODS AND RESULTS: Whole-exome sequencing performed in a three-generation pedigree with five affected members allowed the identification of one rare non-synonymous substitution (p.R211H) in RRAD, the gene encoding the RAD GTPase, carried by all affected members of the family. Three additional rare missense variants were found in 3/186 unrelated index cases. We detected higher levels of RRAD transcripts in subepicardium than in subendocardium in human heart, and in the right ventricle outflow tract compared to the other cardiac compartments in mice. The p.R211H variant was then subjected to electrophysiological and structural investigations in human cardiomyocytes derived from induced pluripotent stem cells (iPSC-CMs). Cardiomyocytes derived from induced pluripotent stem cells from two affected family members exhibited reduced action potential upstroke velocity, prolonged action potentials and increased incidence of early afterdepolarizations, with decreased Na+ peak current amplitude and increased Na+ persistent current amplitude, as well as abnormal distribution of actin and less focal adhesions, compared with intra-familial control iPSC-CMs Insertion of p.R211H-RRAD variant in control iPSCs by genome editing confirmed these results. In addition, iPSC-CMs from affected patients exhibited a decreased L-type Ca2+ current amplitude. CONCLUSION: This study identified a potential new BrS-susceptibility gene, RRAD. Cardiomyocytes derived from induced pluripotent stem cells expressing RRAD variant recapitulated single-cell electrophysiological features of BrS, including altered Na+ current, as well as cytoskeleton disturbances.


Asunto(s)
Síndrome de Brugada/genética , Mutación Missense , Miocitos Cardíacos/patología , Proteínas ras/genética , Potenciales de Acción/genética , Adulto , Síndrome de Brugada/patología , Síndrome de Brugada/fisiopatología , Citoesqueleto/genética , Citoesqueleto/patología , Femenino , Marcadores Genéticos , Predisposición Genética a la Enfermedad , Humanos , Masculino , Miocitos Cardíacos/fisiología
8.
Bioorg Med Chem Lett ; 29(5): 755-760, 2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30655216

RESUMEN

Various 3-amino-, 3-aryloxy- and alkoxy-6-arylpyridazines have been synthesized by an electrochemical reductive cross-coupling between 3-amino-, 3-aryloxy- or 3-alkoxy-6-chloropyridazines and aryl or heteroaryl halides. In vitro antiproliferative activity of these products was evaluated against a representative panel of cancer cell lines (HuH7, CaCo-2, MDA-MB-231, HCT116, PC3, NCI-H727, HaCaT) and oncogenicity prevention of the more efficient derivatives was highlighted on human breast cancer cell line MDA-MB 468-Luc prior establishing their interaction with p44/42 and Akt-dependent signaling pathways.


Asunto(s)
Antineoplásicos/síntesis química , Antineoplásicos/farmacología , Piridazinas/síntesis química , Piridazinas/farmacología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Humanos
9.
J Allergy Clin Immunol ; 142(3): 824-833.e3, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29155102

RESUMEN

BACKGROUND: The molecular mechanisms responsible for airway smooth muscle cells' (aSMCs) contraction and proliferation in airway hyperresponsiveness (AHR) associated with asthma are still largely unknown. The small GTPases of the Rho family (RhoA, Rac1, and Cdc42) play a central role in SMC functions including migration, proliferation, and contraction. OBJECTIVE: The objective of this study was to identify the role of Rac1 in aSMC contraction and to investigate its involvement in AHR associated with allergic asthma. METHODS: To define the role of Rac1 in aSMC, ex and in vitro analyses of bronchial reactivity were performed on bronchi from smooth muscle (SM)-specific Rac1 knockout mice and human individuals. In addition, this murine model was exposed to allergens (ovalbumin or house dust mite extract) to decipher in vivo the implication of Rac1 in AHR. RESULTS: The specific SMC deletion or pharmacological inhibition of Rac1 in mice prevented the bronchoconstrictor response to methacholine. In human bronchi, a similar role of Rac1 was observed during bronchoconstriction. We further demonstrated that Rac1 activation is responsible for bronchoconstrictor-induced increase in intracellular Ca2+ concentration and contraction both in murine and in human bronchial aSMCs, through its association with phospholipase C ß2 and the stimulation of inositol 1,4,5-trisphosphate production. In vivo, Rac1 deletion in SMCs or pharmacological Rac1 inhibition by nebulization of NSC23766 prevented AHR in murine models of allergic asthma. Moreover, nebulization of NSC23766 decreased eosinophil and neutrophil populations in bronchoalveolar lavages from mice with asthma. CONCLUSIONS: Our data reveal an unexpected and essential role of Rac1 in the regulation of intracellular Ca2+ and contraction of aSMCs, and the development of AHR. Rac1 thus appears as an attractive therapeutic target in asthma, with a combined beneficial action on both bronchoconstriction and pulmonary inflammation.


Asunto(s)
Broncoconstricción/fisiología , Miocitos del Músculo Liso/fisiología , Neuropéptidos/fisiología , Hipersensibilidad Respiratoria/fisiopatología , Proteína de Unión al GTP rac1/fisiología , Aminoquinolinas/farmacología , Animales , Bronquios/fisiología , Calcio/fisiología , Células Cultivadas , Humanos , Masculino , Ratones Noqueados , Contracción Muscular , Músculo Liso/fisiología , Neuropéptidos/antagonistas & inhibidores , Pirimidinas/farmacología , Tráquea/fisiología , Proteína de Unión al GTP rac1/antagonistas & inhibidores
10.
J Am Soc Nephrol ; 28(4): 1216-1226, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28087726

RESUMEN

AKI is a frequent complication in hospitalized patients. Unfortunately, there is no effective pharmacologic approach for treating or preventing AKI. In rodents, mineralocorticoid receptor (MR) antagonism prevents AKI induced by ischemia-reperfusion (IR). We investigated the specific role of vascular MR in mediating AKI induced by IR. We also assessed the protective effect of MR antagonism in IR-induced AKI in the Large White pig, a model of human AKI. In mice, MR deficiency in smooth muscle cells (SMCs) protected against kidney IR injury. MR blockade by the novel nonsteroidal MR antagonist, finerenone, or genetic deletion of MR in SMCs associated with weaker oxidative stress production. Moreover, ischemic kidneys had higher levels of Rac1-GTP, required for NADPH oxidase activation, than sham control kidneys, and genetic deletion of Rac1 in SMCs protected against AKI. Furthermore, genetic deletion of MR in SMCs blunted the production of Rac1-GTP after IR. Pharmacologic inhibition of MR also prevented AKI induced by IR in the Large White pig. Altogether, we show that MR antagonism, or deletion of the MR gene in SMCs, limited the renal injury induced by IR through effects on Rac1-mediated MR signaling. The benefits of MR antagonism in the pig provide a rational basis for future clinical trials assessing the benefits of this approach in patients with IR-mediated AKI.


Asunto(s)
Lesión Renal Aguda/tratamiento farmacológico , Antagonistas de Receptores de Mineralocorticoides/uso terapéutico , Neuropéptidos/fisiología , Proteína de Unión al GTP rac1/fisiología , Lesión Renal Aguda/etiología , Animales , Células Cultivadas , Masculino , Ratones , Músculo Liso Vascular/citología , Miocitos del Músculo Liso , Daño por Reperfusión/complicaciones , Porcinos
11.
Pharmacol Rev ; 67(4): 1074-95, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26419448

RESUMEN

Rho-associated kinases ROCK1 and ROCK2 are key regulators of actin cytoskeleton dynamics downstream of Rho GTPases that participate in the control of important physiologic functions, S including cell contraction, migration, proliferation, adhesion, and inflammation. Several excellent review articles dealing with ROCK function and regulation have been published over the past few years. Although a brief overview of general molecular, biochemical, and functional properties of ROCKs is included, an effort has been made to produce an original work by collecting and synthesizing recent studies aimed at translating basic discoveries from cell and experimental models into knowledge of human physiology, pathophysiological mechanisms, and medical therapeutics. This review points out the specificity and distinct roles of ROCK1 and ROCK2 isoforms highlighted in the last few years. Results obtained from genetically modified mice and genetic analysis in humans are discussed. This review also addresses the involvement of ROCKs in human diseases and the potential use of ROCK activity as a biomarker or a pharmacological target for specific inhibitors.


Asunto(s)
Quinasas Asociadas a rho/fisiología , Citoesqueleto de Actina/metabolismo , Animales , Animales Modificados Genéticamente , Asma/fisiopatología , Enfermedades Autoinmunes/fisiopatología , Biomarcadores , Enfermedades Cardiovasculares/fisiopatología , Movimiento Celular , Proliferación Celular , Endotelio/fisiología , Glaucoma/fisiopatología , Glucosa/metabolismo , Humanos , Inflamación/fisiopatología , Enfermedades Renales/fisiopatología , Leucocitos/metabolismo , Músculo Liso/fisiología , Neoplasias/fisiopatología , Enfermedades del Sistema Nervioso/fisiopatología , Polimorfismo de Nucleótido Simple , Transducción de Señal , Quinasas Asociadas a rho/genética
12.
Circ Res ; 112(10): 1323-33, 2013 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-23536307

RESUMEN

RATIONALE: Endothelial activation and apoptosis release membrane-shed microparticles (EMP) that emerge as important biological effectors. OBJECTIVE: Because laminar shear stress (SS) is a major physiological regulator of endothelial survival, we tested the hypothesis that SS regulates EMP release. METHODS AND RESULTS: EMP levels were quantified by flow cytometry in medium of endothelial cells subjected to low or high SS (2 and 20 dyne/cm(2)). EMP levels augmented with time in low SS conditions compared with high SS conditions. This effect was sensitive to extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) and Rho kinases inhibitors but unaffected by caspase inhibitors. Low SS-stimulated EMP release was associated with increased endothelial Rho kinases and ERK1/2 activities and cytoskeletal reorganization. Overexpression of constitutively active RhoA stimulated EMP release under high SS. We also examined the effect of nitric oxide (NO) in mediating SS effects. L-NG-nitroarginine methyl ester (L-NAME), but not D-NG-nitroarginine methyl ester, increased high SS-induced EMP levels by 3-fold, whereas the NO donor S-nitroso-N-acetyl-D,L-penicillamine (SNAP) decreased it. L-NAME and SNAP did not affect Rho kinases and ERK1/2 activities. Then, we investigated NO effect on membrane remodeling because microparticle release is abolished in ABCA1-deficient cells. ABCA1 expression, which was greater under low SS than under high SS, was augmented by L-NAME under high SS and decreased by SNAP under low SS conditions. CONCLUSIONS: Altogether, these results demonstrate that sustained atheroprone low SS stimulates EMP release through activation of Rho kinases and ERK1/2 pathways, whereas atheroprotective high SS limits EMP release in a NO-dependent regulation of ABCA1 expression and of cytoskeletal reorganization. These findings, therefore, identify endothelial SS as a physiological regulator of microparticle release.


Asunto(s)
Micropartículas Derivadas de Células/metabolismo , Endotelio Vascular/citología , Endotelio Vascular/metabolismo , Estrés Mecánico , Estrés Fisiológico/fisiología , Transportador 1 de Casete de Unión a ATP , Transportadoras de Casetes de Unión a ATP/metabolismo , Adulto , Anciano , Apoptosis/fisiología , Células Cultivadas , Endotelio Vascular/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Femenino , Humanos , Técnicas In Vitro , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/fisiología , Masculino , Persona de Mediana Edad , NG-Nitroarginina Metil Éster/farmacología , Óxido Nítrico/farmacología , S-Nitroso-N-Acetilpenicilamina/farmacología , Quinasas Asociadas a rho/efectos de los fármacos , Quinasas Asociadas a rho/fisiología
13.
J Mater Sci Mater Med ; 24(12): 2729-39, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23904056

RESUMEN

Drug-eluting stents have been developed to reduce the risk of restenosis after angioplasty. To facilitate the adhesion of a poly(lactic acid) (PLA) overlayer loaded with rapamycin (20 wt%), a biodegradable macromonomer based on poly(lactic acid) (HEMA-PLA) was grafted onto the metallic stent by electrografting in a one-step reaction involving the immobilization of aryl diazonium onto the metal followed by an in situ surface electro-polymerization. The HEMA-PLA coating was chemically characterized. Mechanical performance during stent expansion was tested. Morphology examinations showed a strong adhesion of PLA topcoat in the presence of the electrografted layer. Biocompatibility and degradation of the coating were studied in vitro and in vivo in rabbit iliac arteries. These 28 days implantations resulted in a minimal inflammatory process with a partial degradation of the coating. These results suggest that this kind of anchoring of a biodegradable layer shows great potential for drug-eluting stents.


Asunto(s)
Stents Liberadores de Fármacos , Ácido Láctico/química , Metales/química , Polímeros/química , Sirolimus/administración & dosificación , Angioplastia/instrumentación , Animales , Arterias/patología , Materiales Biocompatibles , Adhesión Celular , Reestenosis Coronaria/prevención & control , Sistemas de Liberación de Medicamentos , Electroquímica , Humanos , Inflamación , Masculino , Poliésteres , Conejos , Stents , Estrés Mecánico
14.
Allergy Asthma Immunol Res ; 15(2): 246-261, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37021509

RESUMEN

PURPOSE: Asthma is a frequent chronic inflammatory bronchial disease affecting more than 300 million patients worldwide, 70% of whom are secondary to allergy. The diversity of asthmatic endotypes contributes to their complexity. The inter-relationship between allergen and other exposure and the airway microbiome adds to the phenotypic diversity and defines the natural course of asthma. Here, we compared the mouse models of house dust mite (HDM)-induced allergic asthma. Allergic sensitization was performed via various routes and associated with outcomes. METHODS: Mice were sensitized with HDM via the oral, nasal or percutaneous routes. Lung function, barrier integrity, immune response and microbiota composition were analyzed. RESULTS: Severe impairment of respiratory function was observed in the mice sensitized by the nasal and cutaneous paths. It was associated with epithelial dysfunction characterized by an increased permeability secondary to junction protein disruption. Such sensitization paths induced a mixed eosinophilic and neutrophilic inflammatory response with high interleukin (IL)-17 airway secretion. In contrast, orally sensitized mice showed a mild impairment of respiratory function. Epithelial dysfunction was mild with increased mucus production, but preserved epithelial junctions. Regarding lung microbiota, sensitization provoked a significant loss of diversity. At the genus level, Cutibacterium, Acinetobacter, Streptococcus and Lactobacillus were found to be modulated according to the sensitization pathway. An increase in theanti-inflammatory microbiota metabolites was observed in the oral-sensitization group. CONCLUSIONS: Our study highlights the strong impact of the sensitization route on the pathophysiology and the critical phenotypic diversity of allergic asthma in a mouse model.

15.
J Neurointerv Surg ; 15(6): 566-571, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35577561

RESUMEN

BACKGROUND: Geometrical parameters, including arterial bifurcation angle, tortuosity, and arterial diameters, have been associated with the pathophysiology of intracranial aneurysm (IA) formation. The aim of this study was to investigate whether these parameters were present before or if they resulted from IA formation and growth. METHODS: Patients from nine academic centers were retrospectively identified if they presented with a de novo IA or a significant IA growth on subsequent imaging. For each patient, geometrical parameters were extracted using a semi-automated algorithm and compared between bifurcations with IA formation or growth (aneurysmal group), and their contralateral side without IA (control group). These parameters were compared at two different times using univariable models, multivariable models, and a sensitivity analysis with paired comparison. RESULTS: 46 patients were included with 21 de novo IAs (46%) and 25 significant IA growths (54%). The initial angle was not different between the aneurysmal and control groups (129.7±42.1 vs 119.8±34.3; p=0.264) but was significantly wider at the final stage (140.4±40.9 vs 121.5±34.1; p=0.032), with a more important widening of the aneurysmal angle (10.8±15.8 vs 1.78±7.38; p=0.001). Variations in other parameters were not significant. These results were confirmed by paired comparisons. CONCLUSION: Our study suggests that wider bifurcation angles that have long been deemed causal factors for IA formation or growth may be secondary to IA formation at pathologic bifurcation sites. This finding has implications for our understanding of IA formation pathophysiology.


Asunto(s)
Aneurisma Intracraneal , Humanos , Estudios Retrospectivos , Arteria Cerebral Media/patología , Angiografía Cerebral/métodos , Imagenología Tridimensional
16.
Am J Physiol Cell Physiol ; 302(9): C1394-404, 2012 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-22322975

RESUMEN

Sustained overactivation of RhoA is a common component for the pathogenesis of several cardiovascular disorders, including hypertension. Although activity of Rho proteins depends on Rho exchange factors (Rho-GEFs), the identity of Rho-GEFs expressed in vascular smooth muscle cells (VSMC) and participating in the control of Rho protein activity and Rho-dependent functions remains unknown. To address this question, we analyzed by quantitative RT-PCR the expression profile of 28 RhoA-GEFs in arteries of normotensive (saline-treated) and hypertensive (ANG II-treated) rats. Sixteen RhoA-GEFs were downregulated in mesenteric arteries of hypertensive rats, among which nine are also downregulated in cultured VSMC stimulated by ANG II (100 nM, 48 h), suggesting a direct effect of ANG II. Inhibition of type 1 ANG II receptors (losartan, 1 µM) or Rho kinase (fasudil, 10 µM) prevented ANG II-induced RhoA-GEF downregulation. Functionally, ANG II-induced downregulation of RhoA-GEFs is associated with decreased Rho kinase activation in response to endothelin-1, norepinephrine, and U-46619. This work thus identifies a group of RhoA-GEFs that controls RhoA and RhoA-dependent functions in VSMC, and a negative feedback of RhoA/Rho kinase activity on the expression of these RhoA-GEFs that may play an adaptative role to limit RhoA/Rho kinase activation.


Asunto(s)
Retroalimentación Fisiológica/fisiología , Factores de Intercambio de Guanina Nucleótido/biosíntesis , Hipertensión/fisiopatología , Músculo Liso Vascular/metabolismo , Quinasas Asociadas a rho/metabolismo , Angiotensina II/metabolismo , Angiotensina II/toxicidad , Animales , Arterias/metabolismo , Western Blotting , Perfilación de la Expresión Génica , Hipertensión/inducido químicamente , Masculino , Músculo Liso Vascular/fisiopatología , ARN Interferente Pequeño , Ratas , Ratas Endogámicas WKY , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal/fisiología , Transfección
17.
Arterioscler Thromb Vasc Biol ; 31(11): 2634-42, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21852563

RESUMEN

OBJECTIVE: Estradiol (E2) mediates numerous beneficial effects assigned to estrogens, but whereas mechanisms have been described at the endothelial level, direct effects on vascular smooth muscle cells (VSMC) are poorly documented. As evidence accumulates regarding the role of RhoA in vascular pathophysiology and the benefit of RhoA-Rho associated protein kinase (Rock) pathway inhibition, we analyzed if E2 could inhibit it in VSMC. METHODS AND RESULTS: We show that in VSMC, E2 inhibits the RhoA-Rock pathway in a time- and concentration-dependent manner. The inhibition of RhoA-Rock pathway results from E2-induced phosphorylation of the Ser188 of RhoA. Using pharmacological, transfection, and in vitro phosphorylation experiments, we demonstrate that AMP-activated protein kinase subunit alpha 1 (AMPKα1) is activated by estrogen receptor stimulation and catalyzes RhoA phosphorylation induced by E2. Ex vivo, ovariectomy leads to an increase in the amplitude of phenylephrine- or serotonine-induced contractions of aortic rings in wild-type mice but not in AMPKα1-knock-out mice or E2-supplemented animals. These functional effects were correlated with a reduced level of RhoA phosphorylation in the aorta of ovariectomized female, male, and AMPKα1 knock-out mice. CONCLUSION: Our work thus defines AMPKα1 as (1) a new kinase for RhoA and (2) a new mediator of the vasoprotective effects of estrogen.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Estradiol/farmacología , Músculo Liso Vascular/efectos de los fármacos , Músculo Liso Vascular/metabolismo , Proteínas de Unión al GTP rho/metabolismo , Proteínas Quinasas Activadas por AMP/genética , Animales , Células Cultivadas , Relación Dosis-Respuesta a Droga , Femenino , Masculino , Ratones , Ratones Noqueados , Modelos Animales , Músculo Liso Vascular/citología , Ovariectomía , Fosforilación/efectos de los fármacos , Receptores de Estrógenos/metabolismo , Transducción de Señal/efectos de los fármacos , Factores de Tiempo , Vasoconstricción/fisiología , Quinasas Asociadas a rho/antagonistas & inhibidores , Quinasas Asociadas a rho/metabolismo , Proteína de Unión al GTP rhoA
18.
Br J Nutr ; 107(9): 1305-15, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-21920060

RESUMEN

Glucose intolerance and dyslipidaemia are independent risk factors for endothelium dysfunction and CVD. The aim of the present study was to analyse the preventive effect of n-3 PUFA (EPA and DHA) on lipid and carbohydrate disturbances and endothelial dysfunction. Three groups of adult hamsters were studied for 20 weeks: (1) control diet (Control); (2) high-fat diet (HF); (3) high-fat diet enriched with n-3 PUFA (HFn-3) groups. The increase in body weight and fat mass in the HF compared to the Control group (P < 0.05) was not found in the HFn-3 group. Muscle TAG content was similar in the Control and HF groups, but significantly lower in the HFn-3 group (P = 0.008). Glucose tolerance was impaired in the HF compared to the Control group, but this impairment was prevented by n-3 PUFA in the HFn-3 group (P < 0.001). Plasma TAG and cholesterol were higher in the HF group compared to the Control group (P < 0.001), but lower in the HFn-3 group compared to the HF group (P < 0.001). HDL-cholesterol was lower in the HFn-3 group compared to the Control and HF groups (P < 0.0005). Hepatic secretion of TAG was lower in the HFn-3 group compared to the HF group (P < 0.005), but did not differ from the Control group. Hepatic gene expression of sterol regulatory element-binding protein-1c, diacylglycerol O-acyltransferase 2 and stearyl CoA desaturase 1 was lower in the HFn-3 group, whereas carnitine palmitoyl transferase 1 and scavenger receptor class B type 1 expression was higher (P < 0.05). In adipocytes and adipose macrophages, PPARγ and TNFα expression was higher in the HF and HFn-3 groups compared to the Control group. Endothelium relaxation was higher in the HFn-3 (P < 0.001) than in the HF and Control groups, and was correlated with glucose intolerance (P = 0.03) and cholesterol (P = 0.0003). In conclusion, n-3 PUFA prevent some metabolic disturbances induced by high-fat diet and improve endothelial function in hamsters.


Asunto(s)
Dieta Alta en Grasa , Endotelio Vascular/efectos de los fármacos , Ácidos Grasos Omega-3/metabolismo , Obesidad/metabolismo , Adipocitos/citología , Tejido Adiposo/metabolismo , Alimentación Animal , Animales , Aorta/patología , Composición Corporal , Peso Corporal , Antígenos CD36/metabolismo , Metabolismo de los Hidratos de Carbono , Cricetinae , Dislipidemias/metabolismo , Endotelio Vascular/metabolismo , Glucosa/metabolismo , Intolerancia a la Glucosa , Metabolismo de los Lípidos , Lípidos/sangre , Lipoproteínas VLDL/metabolismo , Hígado/metabolismo , Macrófagos/citología , Masculino , Mesocricetus , Músculos/metabolismo , Obesidad/fisiopatología
19.
Biochem Pharmacol ; 203: 115180, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35853497

RESUMEN

Small molecule inhibitors of GTPases are increasingly considered for the treatment of multiple human pathologies. The GTPase Rac1 (Ras-related C3 botulinum toxin substrate 1) plays major roles in vital cellular processes, notably in the control cell motility and dynamic, the regulation of oxidative stress, and in inflammatory and immune surveillance. As such, Rac1 is viewed as a potential target to combat cancers but also diverse inflammatory, metabolic, neurodegenerative, respiratory, cardiovascular, viral, and parasitic diseases. Potent and selective Rac1 inhibitors have been identified and designed, such as compounds GYS32661 and MBQ-167 both in preclinical development for the treatment of advanced solid tumors. The pleiotropic roles and ubiquitous expression of the protein can be viewed as limitations for anticancer approaches. However, the frequent overexpression and/or hyperactivation of the Rac1 in difficult-to-treat chemoresistant cancers, make Rac1 an attractive target in oncology. The key roles of Rac1 in multiple cellular pathways, together with its major implications in carcinogenesis, tumor proliferation and metastasis, support the development of small molecule inhibitors. The challenge is high and the difficulty shall not be underestimated, but the target is innovative and promising in combination with chemo- and/or immuno-therapy. Opportunities and challenges associated with the targeting of Rac1 are discussed.


Asunto(s)
Estrés Oxidativo , Proteína de Unión al GTP rac1 , Movimiento Celular , Humanos , Proteína de Unión al GTP rac1/genética , Proteína de Unión al GTP rac1/metabolismo
20.
Front Cardiovasc Med ; 9: 815668, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35224050

RESUMEN

Intracranial aneurysm (IA) is a frequent and generally asymptomatic cerebrovascular abnormality characterized as a localized dilation and wall thinning of intracranial arteries that preferentially arises at the arterial bifurcations of the circle of Willis. The devastating complication of IA is its rupture, which results in subarachnoid hemorrhage that can lead to severe disability and death. IA affects about 3% of the general population with an average age for detection of rupture around 50 years. IAs, whether ruptured or unruptured, are more common in women than in men by about 60% overall, and more especially after the menopause where the risk is double-compared to men. Although these data support a protective role of estrogen, differences in the location and number of IAs observed in women and men under the age of 50 suggest that other underlying mechanisms participate to the greater IA prevalence in women. The aim of this review is to provide a comprehensive overview of the current data from both clinical and basic research and a synthesis of the proposed mechanisms that may explain why women are more prone to develop IA.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA