Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(37): e2301030120, 2023 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-37669365

RESUMEN

A hallmark of multiple sclerosis (MS) is the formation of multiple focal demyelinating lesions within the central nervous system (CNS). These lesions mainly consist of phagocytes that play a key role in lesion progression and remyelination, and therefore represent a promising therapeutic target in MS. We recently showed that unsaturated fatty acids produced by stearoyl-CoA desaturase-1 induce inflammatory foam cell formation during demyelination. These fatty acids are elongated by the "elongation of very long chain fatty acids" proteins (ELOVLs), generating a series of functionally distinct lipids. Here, we show that the expression and activity of ELOVLs are altered in myelin-induced foam cells. Especially ELOVL6, an enzyme responsible for converting saturated and monounsaturated C16 fatty acids into C18 species, was found to be up-regulated in myelin phagocytosing phagocytes in vitro and in MS lesions. Depletion of Elovl6 induced a repair-promoting phagocyte phenotype through activation of the S1P/PPARγ pathway. Elovl6-deficient foamy macrophages showed enhanced ABCA1-mediated lipid efflux, increased production of neurotrophic factors, and reduced expression of inflammatory mediators. Moreover, our data show that ELOVL6 hampers CNS repair, as Elovl6 deficiency prevented demyelination and boosted remyelination in organotypic brain slice cultures and the mouse cuprizone model. These findings indicate that targeting ELOVL6 activity may be an effective strategy to stimulate CNS repair in MS and other neurodegenerative diseases.


Asunto(s)
Esclerosis Múltiple , Remielinización , Animales , Ratones , Adipogénesis , Modelos Animales de Enfermedad , Ácidos Grasos , Ácidos Grasos Monoinsaturados , Células Espumosas
2.
J Lipid Res ; 64(2): 100325, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36592658

RESUMEN

Lysoplasmalogens are a class of vinyl ether bioactive lipids that have a central role in plasmalogen metabolism and membrane fluidity. The liver X receptor (LXR) transcription factors are important determinants of cellular lipid homeostasis owing to their ability to regulate cholesterol and fatty acid metabolism. However, their role in governing the composition of lipid species such as lysoplasmalogens in cellular membranes is less well studied. Here, we mapped the lipidome of bone marrow-derived macrophages (BMDMs) following LXR activation. We found a marked reduction in the levels of lysoplasmalogen species in the absence of changes in the levels of plasmalogens themselves. Transcriptional profiling of LXR-activated macrophages identified the gene encoding transmembrane protein 86a (TMEM86a), an integral endoplasmic reticulum protein, as a previously uncharacterized sterol-regulated gene. We demonstrate that TMEM86a is a direct transcriptional target of LXR in macrophages and microglia and that it is highly expressed in TREM2+/lipid-associated macrophages in human atherosclerotic plaques, where its expression positively correlates with other LXR-regulated genes. We further show that both murine and human TMEM86a display active lysoplasmalogenase activity that can be abrogated by inactivating mutations in the predicted catalytic site. Consequently, we demonstrate that overexpression of Tmem86a in BMDM markedly reduces lysoplasmalogen abundance and membrane fluidity, while reciprocally, silencing of Tmem86a increases basal lysoplasmalogen levels and abrogates the LXR-dependent reduction of this lipid species. Collectively, our findings implicate TMEM86a as a sterol-regulated lysoplasmalogenase in macrophages that contributes to sterol-dependent membrane remodeling.


Asunto(s)
Macrófagos , Esteroles , Animales , Humanos , Ratones , Receptores X del Hígado/metabolismo , Macrófagos/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas de la Membrana/metabolismo , Receptores Inmunológicos , Esteroles/metabolismo , Factores de Transcripción/metabolismo
3.
Cell Mol Life Sci ; 79(10): 515, 2022 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-36100764

RESUMEN

Foamy macrophages and microglia containing lipid droplets (LDs) are a pathological hallmark of demyelinating disorders affecting the central nervous system (CNS). We and others showed that excessive accumulation of intracellular lipids drives these phagocytes towards a more inflammatory phenotype, thereby limiting CNS repair. To date, however, the mechanisms underlying LD biogenesis and breakdown in lipid-engorged phagocytes in the CNS, as well as their impact on foamy phagocyte biology and lesion progression, remain poorly understood. Here, we provide evidence that LD-associated protein perilipin-2 (PLIN2) controls LD metabolism in myelin-containing phagocytes. We show that PLIN2 protects LDs from lipolysis-mediated degradation, thereby impairing intracellular processing of myelin-derived lipids in phagocytes. Accordingly, loss of Plin2 stimulates LD turnover in foamy phagocytes, driving them towards a less inflammatory phenotype. Importantly, Plin2-deficiency markedly improves remyelination in the ex vivo brain slice model and in the in vivo cuprizone-induced demyelination model. In summary, we identify PLIN2 as a novel therapeutic target to prevent the pathogenic accumulation of LDs in foamy phagocytes and to stimulate remyelination.


Asunto(s)
Gotas Lipídicas , Remielinización , Gotas Lipídicas/metabolismo , Lípidos , Vaina de Mielina/metabolismo , Perilipina-2/genética , Perilipina-2/metabolismo
4.
J Neuroinflammation ; 18(1): 148, 2021 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-34218792

RESUMEN

BACKGROUND: Macrophages play a dual role in neuroinflammatory disorders such as multiple sclerosis (MS). They are involved in lesion onset and progression but can also promote the resolution of inflammation and repair of damaged tissue. In this study, we investigate if and how phloretin, a flavonoid abundantly present in apples and strawberries, lowers the inflammatory phenotype of macrophages and suppresses neuroinflammation. METHODS: Transcriptional changes in mouse bone marrow-derived macrophages upon phloretin exposure were assessed by bulk RNA sequencing. Underlying pathways related to inflammation, oxidative stress response and autophagy were validated by quantitative PCR, fluorescent and absorbance assays, nuclear factor erythroid 2-related factor 2 (Nrf2) knockout mice, western blot, and immunofluorescence. The experimental autoimmune encephalomyelitis (EAE) model was used to study the impact of phloretin on neuroinflammation in vivo and confirm underlying mechanisms. RESULTS: We show that phloretin reduces the inflammatory phenotype of macrophages and markedly suppresses neuroinflammation in EAE. Phloretin mediates its effect by activating the Nrf2 signaling pathway. Nrf2 activation was attributed to 5' AMP-activated protein kinase (AMPK)-dependent activation of autophagy and subsequent kelch-like ECH-associated protein 1 (Keap1) degradation. CONCLUSIONS: This study opens future perspectives for phloretin as a therapeutic strategy for neuroinflammatory disorders such as MS. TRIAL REGISTRATION: Not applicable.


Asunto(s)
Autofagia/efectos de los fármacos , Encefalomielitis Autoinmune Experimental/tratamiento farmacológico , Encefalomielitis Autoinmune Experimental/metabolismo , Macrófagos/efectos de los fármacos , Factor 2 Relacionado con NF-E2/metabolismo , Floretina/farmacología , Animales , Autofagia/fisiología , Células Cultivadas , Factores Inmunológicos/farmacología , Factores Inmunológicos/uso terapéutico , Mediadores de Inflamación/antagonistas & inhibidores , Mediadores de Inflamación/metabolismo , Macrófagos/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Factor 2 Relacionado con NF-E2/deficiencia , Floretina/uso terapéutico
5.
Int J Mol Sci ; 21(23)2020 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-33297574

RESUMEN

Macrophages play a crucial role during the pathogenesis of multiple sclerosis (MS), a neuroinflammatory autoimmune disorder of the central nervous system. Important regulators of the metabolic and inflammatory phenotype of macrophages are liver X receptors (LXRs) and peroxisome proliferator-activated receptors (PPARs). Previously, it has been reported that PPARγ expression is decreased in peripheral blood mononuclear cells of MS patients. The goal of the present study was to determine to what extent PPARγ, as well as the closely related nuclear receptors PPARα and ß and LXRα and ß, are differentially expressed in monocytes from MS patients and how this change in expression affects the function of monocyte-derived macrophages. We demonstrate that monocytes of relapsing-remitting MS patients display a marked decrease in PPARγ expression, while the expression of PPARα and LXRα/ß is not altered. Interestingly, exposure of monocyte-derived macrophages from healthy donors to MS-associated proinflammatory cytokines mimicked this reduction in PPARγ expression. While a reduced PPARγ expression did not affect the inflammatory and phagocytic properties of myelin-loaded macrophages, it did impact myelin processing by increasing the intracellular cholesterol load of myelin-phagocytosing macrophages. Collectively, our findings indicate that an inflammation-induced reduction in PPARγ expression promotes myelin-induced foam cell formation in macrophages in MS.


Asunto(s)
Células Espumosas/metabolismo , Esclerosis Múltiple Recurrente-Remitente/metabolismo , PPAR gamma/metabolismo , Células Cultivadas , Humanos , Esclerosis Múltiple Recurrente-Remitente/genética , Esclerosis Múltiple Recurrente-Remitente/patología , Vaina de Mielina/metabolismo , PPAR gamma/genética
6.
Trends Cell Biol ; 2023 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-37770289

RESUMEN

Lipids are essential molecules that play key roles in cell physiology by serving as structural components, for storage of energy, and in signal transduction. Hence, efficient regulation and maintenance of lipid homeostasis are crucial for normal cellular and tissue function. In the past decade, increasing research has shown the importance of ubiquitination in regulating the stability of key players in different aspects of lipid metabolism. This review describes recent insights into the regulation of lipid metabolism by ubiquitin signaling, discusses how ubiquitination can be targeted in diseases characterized by lipid dysregulation, and identifies areas that require further research.

7.
J Extracell Vesicles ; 12(12): e12394, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-38124258

RESUMEN

Macrophages play major roles in the pathophysiology of various neurological disorders, being involved in seemingly opposing processes such as lesion progression and resolution. Yet, the molecular mechanisms that drive their harmful and benign effector functions remain poorly understood. Here, we demonstrate that extracellular vesicles (EVs) secreted by repair-associated macrophages (RAMs) enhance remyelination ex vivo and in vivo by promoting the differentiation of oligodendrocyte precursor cells (OPCs). Guided by lipidomic analysis and applying cholesterol depletion and enrichment strategies, we find that EVs released by RAMs show markedly elevated cholesterol levels and that cholesterol abundance controls their reparative impact on OPC maturation and remyelination. Mechanistically, EV-associated cholesterol was found to promote OPC differentiation predominantly through direct membrane fusion. Collectively, our findings highlight that EVs are essential for cholesterol trafficking in the brain and that changes in cholesterol abundance support the reparative impact of EVs released by macrophages in the brain, potentially having broad implications for therapeutic strategies aimed at promoting repair in neurodegenerative disorders.


Asunto(s)
Vesículas Extracelulares , Encéfalo , Macrófagos , Diferenciación Celular , Colesterol
8.
Cell Mol Immunol ; 20(6): 666-679, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37041314

RESUMEN

The imbalance between pathogenic and protective T cell subsets is a cardinal feature of autoimmune disorders such as multiple sclerosis (MS). Emerging evidence indicates that endogenous and dietary-induced changes in fatty acid metabolism have a major impact on both T cell fate and autoimmunity. To date, however, the molecular mechanisms that underlie the impact of fatty acid metabolism on T cell physiology and autoimmunity remain poorly understood. Here, we report that stearoyl-CoA desaturase-1 (SCD1), an enzyme essential for the desaturation of fatty acids and highly regulated by dietary factors, acts as an endogenous brake on regulatory T-cell (Treg) differentiation and augments autoimmunity in an animal model of MS in a T cell-dependent manner. Guided by RNA sequencing and lipidomics analysis, we found that the absence of Scd1 in T cells promotes the hydrolysis of triglycerides and phosphatidylcholine through adipose triglyceride lipase (ATGL). ATGL-dependent release of docosahexaenoic acid enhanced Treg differentiation by activating the nuclear receptor peroxisome proliferator-activated receptor gamma. Our findings identify fatty acid desaturation by SCD1 as an essential determinant of Treg differentiation and autoimmunity, with potentially broad implications for the development of novel therapeutic strategies and dietary interventions for autoimmune disorders such as MS.


Asunto(s)
Enfermedades Autoinmunes , Estearoil-CoA Desaturasa , Animales , Estearoil-CoA Desaturasa/genética , Estearoil-CoA Desaturasa/metabolismo , Autoinmunidad , Ácidos Grasos/metabolismo , Diferenciación Celular
9.
Autophagy ; 18(11): 2697-2710, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35282773

RESUMEN

Foamy macrophages containing abundant intracellular myelin remnants are an important pathological hallmark of multiple sclerosis. Reducing the intracellular lipid burden in foamy macrophages is considered a promising therapeutic strategy to induce a phagocyte phenotype that promotes central nervous system repair. Recent research from our group showed that sustained intracellular accumulation of myelin-derived lipids skews these phagocytes toward a disease-promoting and more inflammatory phenotype. Our data now demonstrate that disturbed lipophagy, a selective form of autophagy that helps with the degradation of lipid droplets, contributes to the induction of this phenotype. Stimulating autophagy using the natural disaccharide trehalose reduced the lipid load and inflammatory phenotype of myelin-laden macrophages. Importantly, trehalose was able to boost remyelination in the ex vivo brain slice model and the in vivo cuprizone-induced demyelination model. In summary, our results provide a molecular rationale for impaired metabolism of myelin-derived lipids in macrophages, and identify lipophagy induction as a promising treatment strategy to promote remyelination.Abbreviations: Baf: bafilomycin a1; BMDM: bone marrow-derived macrophage; CD68: CD68 antigen; CNS: central nervous system; LD: lipid droplet; LIPE/HSL: lipase, hormone sensitive; LPS: lipopolysaccharide; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; MBP: myelin basic protein; MGLL: monoglyceride lipase; MS: multiple sclerosis; NO: nitric oxide; NOS2/iNOS: nitric oxide synthase 2, inducible; ORO: oil red o; PNPLA2: patatin-like phospholipase domain containing 2; PLIN2: perilipin 2; TEM: transmission electron microscopy; TFEB: transcription factor EB; TOH: trehalose.


Asunto(s)
Autofagia , Esclerosis Múltiple , Humanos , Autofagia/genética , Esclerosis Múltiple/metabolismo , Esclerosis Múltiple/patología , Trehalosa/metabolismo , Macrófagos/metabolismo , Lipopolisacáridos/farmacología , Lipopolisacáridos/metabolismo , Óxido Nítrico Sintasa de Tipo II/metabolismo
10.
Cell Rep ; 41(6): 111591, 2022 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-36351388

RESUMEN

The progressive nature of demyelinating diseases lies in the inability of the central nervous system (CNS) to induce proper remyelination. Recently, we and others demonstrated that a dysregulated innate immune response partially underlies failure of CNS remyelination. Extensive accumulation of myelin-derived lipids and an inability to process these lipids was found to induce a disease-promoting phagocyte phenotype. Hence, restoring the ability of these phagocytes to metabolize and efflux myelin-derived lipids represents a promising strategy to promote remyelination. Here, we show that ApoA-I mimetic peptide 5A, a molecule well known to promote activity of the lipid efflux transporter ABCA1, markedly enhances remyelination. Mechanistically, we find that the repair-inducing properties of 5A are attributable to increased clearance and metabolism of remyelination-inhibiting myelin debris via the fatty acid translocase protein CD36, which is transcriptionally controlled by the ABCA1-JAK2-STAT3 signaling pathway. Altogether, our findings indicate that 5A promotes remyelination by stimulating clearance and degradation of myelin debris.


Asunto(s)
Enfermedades Desmielinizantes , Remielinización , Humanos , Remielinización/fisiología , Vaina de Mielina/metabolismo , Enfermedades Desmielinizantes/metabolismo , Apolipoproteína A-I/metabolismo , Péptidos/metabolismo
11.
Trends Endocrinol Metab ; 32(11): 941-951, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34561114

RESUMEN

Lipophagy is the process of selective degradation of lipid droplets (LDs) by autophagy. Several studies have highlighted the importance of lipophagy in regulating cellular lipid levels in various tissues and disease conditions. In recent years, disruption of autophagy and accumulation of LDs have been reported as pathological hallmarks in several neurodegenerative and neuroinflammatory diseases, raising the question whether lipophagy is a process that is important in the progression of these disorders. This supports the growing interest in lipid metabolism as a major player in neurodegeneration, and the emerging understanding of several neurological pathologies as not only proteinopathies but also lipidopathies. In this review we discuss the importance of lipophagy in the most common central nervous system diseases. We examine the latest evidence for the reported interplay between abnormalities in lipid accumulation and autophagy, and propose lipophagy as a potentially important mechanism in neurodegeneration.


Asunto(s)
Autofagia , Enfermedades del Sistema Nervioso Central , Autofagia/fisiología , Enfermedades del Sistema Nervioso Central/metabolismo , Humanos , Gotas Lipídicas/metabolismo , Metabolismo de los Lípidos/fisiología , Lípidos
12.
Front Immunol ; 10: 1811, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31417573

RESUMEN

Dysfunction of the blood-brain barrier (BBB) contributes significantly to the pathogenesis of several neuroinflammatory diseases, including multiple sclerosis (MS). Potential players that regulate BBB function are the liver X receptors (LXRs), which are ligand activated transcription factors comprising two isoforms, LXRα, and LXRß. However, the role of LXRα and LXRß in regulating BBB (dys)function during neuroinflammation remains unclear, as well as their individual involvement. Therefore, the goal of the present study is to unravel whether LXR isoforms have different roles in regulating BBB function under neuroinflammatory conditions. We demonstrate that LXRα, and not LXRß, is essential to maintain barrier integrity in vitro. Specific knockout of LXRα in brain endothelial cells resulted in a more permeable barrier with reduced expression of tight junctions. Additionally, the observed dysfunction was accompanied by increased endothelial inflammation, as detected by enhanced expression of vascular cell adhesion molecule (VCAM-1) and increased transendothelial migration of monocytes toward inflammatory stimuli. To unravel the importance of LXRα in BBB function in vivo, we made use of the experimental autoimmune encephalomyelitis (EAE) MS mouse model. Induction of EAE in a constitutive LXRα knockout mouse and in an endothelial specific LXRα knockout mouse resulted in a more severe disease score in these animals. This was accompanied by higher numbers of infiltrating leukocytes, increased endothelial VCAM-1 expression, and decreased expression of the tight junction molecule claudin-5. Together, this study reveals that LXRα is indispensable for maintaining BBB integrity and its immune quiescence. Targeting the LXRα isoform may help in the development of novel therapeutic strategies to prevent BBB dysfunction, and thereby neuroinflammatory disorders.


Asunto(s)
Barrera Hematoencefálica/inmunología , Encefalomielitis Autoinmune Experimental/inmunología , Células Endoteliales/inmunología , Receptores X del Hígado/inmunología , Animales , Barrera Hematoencefálica/patología , Línea Celular , Encefalomielitis Autoinmune Experimental/genética , Encefalomielitis Autoinmune Experimental/patología , Células Endoteliales/patología , Técnicas de Silenciamiento del Gen , Humanos , Receptores X del Hígado/genética , Ratones , Ratones Noqueados , Molécula 1 de Adhesión Celular Vascular/genética , Molécula 1 de Adhesión Celular Vascular/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA