Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
PLoS Genet ; 11(4): e1005181, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25886163

RESUMEN

The Fragile X-related disorders (FXDs) are members of the Repeat Expansion Diseases, a group of human genetic conditions resulting from expansion of a specific tandem repeat. The FXDs result from expansion of a CGG/CCG repeat tract in the 5' UTR of the FMR1 gene. While expansion in a FXD mouse model is known to require some mismatch repair (MMR) proteins, our previous work and work in mouse models of another Repeat Expansion Disease show that early events in the base excision repair (BER) pathway play a role in the expansion process. One model for repeat expansion proposes that a non-canonical MMR process makes use of the nicks generated early in BER to load the MMR machinery that then generates expansions. However, we show here that heterozygosity for a Y265C mutation in Polß, a key polymerase in the BER pathway, is enough to significantly reduce both the number of expansions seen in paternal gametes and the extent of somatic expansion in some tissues of the FXD mouse. These data suggest that events in the BER pathway downstream of the generation of nicks are also important for repeat expansion. Somewhat surprisingly, while the number of expansions is smaller, the average size of the residual expansions is larger than that seen in WT animals. This may have interesting implications for the mechanism by which BER generates expansions.


Asunto(s)
ADN Polimerasa beta/genética , Reparación del ADN/genética , Síndrome del Cromosoma X Frágil/genética , Expansión de Repetición de Trinucleótido/genética , Animales , Reparación de la Incompatibilidad de ADN/genética , Modelos Animales de Enfermedad , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/patología , Heterocigoto , Humanos , Ratones , Mutación
2.
Hum Mutat ; 35(1): 129-36, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24130133

RESUMEN

Fragile X-associated tremor and ataxia syndrome, Fragile X-associated primary ovarian insufficiency, and Fragile X syndrome are Repeat Expansion Diseases caused by expansion of a CGG•CCG-repeat microsatellite in the 5 UTR of the FMR1 gene. To help understand the expansion mechanism responsible for these disorders, we have crossed mice containing∼147 CGG•CCG repeats in the endogenous murine Fmr1 gene with mice containing a null mutation in the gene encoding the mismatch repair protein MSH2. MSH2 mutations are associated with elevated levels of generalized microsatellite instability. However, we show here for the first time that in the FX mouse model, all maternally and paternally transmitted expansions require Msh2. Even the loss of one Msh2 allele reduced the intergenerational expansion frequency significantly. Msh2 is also required for all somatic expansions and loss of even one functional Msh2 allele reduced the extent of somatic expansion in some organs. Tissues with lower levels of MSH2 were more sensitive to the loss of a single Msh2 allele. This suggests that MSH2 is rate limiting for expansion in this mouse model and that MSH2 levels may be a key factor that accounts for tissue-specific differences in expansion risk.


Asunto(s)
Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Proteína 2 Homóloga a MutS/genética , Expansión de Repetición de Trinucleótido , Alelos , Animales , Modelos Animales de Enfermedad , Dosificación de Gen , Variación Genética , Ratones , Ratones Endogámicos C57BL , Tasa de Mutación , Especificidad de Órganos
3.
iScience ; 27(2): 108814, 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38303711

RESUMEN

A long CGG-repeat tract in the FMR1 gene induces the epigenetic silencing that causes fragile X syndrome (FXS). Epigenetic changes include H4K20 trimethylation, a heterochromatic modification frequently implicated in transcriptional silencing. Here, we report that treatment with A-196, an inhibitor of SUV420H1/H2, the enzymes responsible for H4K20 di-/trimethylation, does not affect FMR1 transcription, but does result in increased chromosomal duplications. Increased duplications were also seen in FXS cells treated with SCR7, an inhibitor of Lig4, a ligase essential for NHEJ. Our study suggests that the fragile X (FX) locus is prone to spontaneous DNA damage that is normally repaired by NHEJ. We suggest that heterochromatinization of the FX allele may be triggered, at least in part, in response to this DNA damage.

4.
Hum Mutat ; 34(1): 157-66, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22887750

RESUMEN

Repeat expansion diseases result from expansion of a specific tandem repeat. The three fragile X-related disorders (FXDs) arise from germline expansions of a CGG•CCG repeat tract in the 5' UTR (untranslated region) of the fragile X mental retardation 1 (FMR1) gene. We show here that in addition to germline expansion, expansion also occurs in the somatic cells of both mice and humans carriers of premutation alleles. Expansion in mice primarily affects brain, testis, and liver with very little expansion in heart or blood. Our data would be consistent with a simple two-factor model for the organ specificity. Somatic expansion in humans may contribute to the mosaicism often seen in individuals with one of the FXDs. Because expansion risk and disease severity are related to repeat number, somatic expansion may exacerbate disease severity and contribute to the age-related increased risk of expansion seen on paternal transmission in humans. As little somatic expansion occurs in murine lymphocytes, our data also raise the possibility that there may be discordance in humans between repeat numbers measured in blood and that present in brain. This could explain, at least in part, the variable penetrance seen in some of these disorders.


Asunto(s)
Regiones no Traducidas 5'/genética , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/genética , Expansión de Repetición de Trinucleótido , Alelos , Animales , Western Blotting , Encéfalo/metabolismo , Proteínas de Unión al ADN/metabolismo , Síndrome del Cromosoma X Frágil/metabolismo , Perfilación de la Expresión Génica , Heterocigoto , Humanos , Hígado/metabolismo , Masculino , Ratones , Proteína 2 Homóloga a MutS/metabolismo , Proteína 3 Homóloga de MutS , Proteínas/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Testículo/metabolismo
5.
Front Genet ; 12: 708860, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34567068

RESUMEN

The human genome has many chromosomal regions that are fragile, demonstrating chromatin breaks, gaps, or constrictions on exposure to replication stress. Common fragile sites (CFSs) are found widely distributed in the population, with the largest subset of these sites being induced by aphidicolin (APH). Other fragile sites are only found in a subset of the population. One group of these so-called rare fragile sites (RFSs) is induced by folate stress. APH-inducible CFSs are generally located in large transcriptionally active genes that are A + T rich and often enriched for tracts of AT-dinucleotide repeats. In contrast, all the folate-sensitive sites mapped to date consist of transcriptionally silenced CGG microsatellites. Thus, all the folate-sensitive fragile sites may have a very similar molecular basis that differs in key ways from that of the APH CFSs. The folate-sensitive FSs include FRAXA that is associated with Fragile X syndrome (FXS), the most common heritable form of intellectual disability. Both CFSs and RFSs can cause chromosomal abnormalities. Recent work suggests that both APH-inducible fragile sites and FRAXA undergo Mitotic DNA synthesis (MiDAS) when exposed to APH or folate stress, respectively. Interestingly, blocking MiDAS in both cases prevents chromosome fragility but increases the risk of chromosome mis-segregation. MiDAS of both APH-inducible and FRAXA involves conservative DNA replication and POLD3, an accessory subunit of the replicative polymerase Pol δ that is essential for break-induced replication (BIR). Thus, MiDAS is thought to proceed via some form of BIR-like process. This review will discuss the recent work that highlights the similarities and differences between these two groups of fragile sites and the growing evidence for the presence of many more novel fragile sites in the human genome.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA