Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
J Exp Bot ; 71(1): 73-89, 2020 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-31494674

RESUMEN

Aggrephagy, a type of selective autophagy that sequesters protein aggregates for degradation in the vacuole, is an important protein quality control mechanism, particularly during cell stress. In mammalian cells, aggrephagy and several other forms of selective autophagy are mediated by dedicated cargo receptors such as NEIGHBOR OF BRCA1 (NBR1). Although plant NBR1 homologs have been linked to selective autophagy during biotic stress, it remains unclear how they impact selective autophagy under non-stressed and abiotic stress conditions. Through microscopic and biochemical analysis of nbr1 mutants expressing autophagy markers and an aggregation-prone reporter, we tested the connection between NBR1 and aggrephagy in Arabidopsis. Although NBR1 is not essential for general autophagy, or for the selective clearance of peroxisomes, mitochondria, or the ER, we found that NBR1 is required for the heat-induced formation of autophagic vesicles. Moreover, cytoplasmic puncta containing aggregation-prone proteins, which were rarely observed in wild-type plants, were found to accumulate in nbr1 mutants under both control and heat stress conditions. Given that NBR1 co-localizes with these cytoplasmic puncta, we propose that Arabidopsis NBR1 is a plant aggrephagy receptor essential for maintaining proteostasis under both heat stress and non-stress conditions.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/fisiología , Autofagia/genética , Proteínas Portadoras/genética , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas Portadoras/metabolismo
2.
Plant J ; 93(5): 871-882, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29314414

RESUMEN

Many plants require prolonged exposure to cold to acquire the competence to flower. The process by which cold exposure results in competence is known as vernalization. In Arabidopsis thaliana, vernalization leads to the stable repression of the floral repressor FLOWERING LOCUS C via chromatin modification, including an increase of trimethylation on lysine 27 of histone H3 (H3K27me3) by Polycomb Repressive Complex 2 (PRC2). Vernalization in pooids is associated with the stable induction of a floral promoter, VERNALIZATION 1 (VRN1). From a screen for mutants with a reduced vernalization requirement in the model grass Brachypodium distachyon, we identified two recessive alleles of ENHANCER OF ZESTE-LIKE 1 (EZL1). EZL1 is orthologous to A. thaliana CURLY LEAF 1, a gene that encodes the catalytic subunit of PRC2. B. distachyon ezl1 mutants flower rapidly without vernalization in long-day (LD) photoperiods; thus, EZL1 is required for the proper maintenance of the vegetative state prior to vernalization. Transcriptomic studies in ezl1 revealed mis-regulation of thousands of genes, including ectopic expression of several floral homeotic genes in leaves. Loss of EZL1 results in the global reduction of H3K27me3 and H3K27me2, consistent with this gene making a major contribution to PRC2 activity in B. distachyon. Furthermore, in ezl1 mutants, the flowering genes VRN1 and AGAMOUS (AG) are ectopically expressed and have reduced H3K27me3. Artificial microRNA knock-down of either VRN1 or AG in ezl1-1 mutants partially restores wild-type flowering behavior in non-vernalized plants, suggesting that ectopic expression in ezl1 mutants may contribute to the rapid-flowering phenotype.


Asunto(s)
Brachypodium/fisiología , Flores/fisiología , Mutación , Proteínas de Plantas/metabolismo , Brachypodium/genética , Inmunoprecipitación de Cromatina , Flores/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Histonas/genética , Histonas/metabolismo , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente
3.
Pathogens ; 13(6)2024 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-38921750

RESUMEN

Prion diseases such as scrapie, bovine spongiform encephalopathy (BSE), and chronic wasting disease (CWD) affect domesticated and wild herbivorous mammals. Animals afflicted with CWD, the transmissible spongiform encephalopathy of cervids (deer, elk, and moose), shed prions into the environment, where they may persist and remain infectious for years. These environmental prions may remain in soil, be transported in surface waters, or assimilated into plants. Environmental sampling is an emerging area of TSE research and can provide more information about prion fate and transport once shed by infected animals. In this study, we have developed the first published method for the extraction and detection of prions in plant tissue using the real-time quaking-induced conversion (RT-QuIC) assay. Incubation with a zwitterionic surfactant followed by precipitation with sodium phosphotungstate concentrates the prions within samples and allows for sensitive detection of prion seeding activity. Using this protocol, we demonstrate that prions can be detected within plant tissues and on plant surfaces using the RT-QuIC assay.

4.
PLoS One ; 19(6): e0303037, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38870153

RESUMEN

Chronic wasting disease (CWD) is a fatal prion disease of cervids spreading across North America. More effective mitigation efforts may require expansion of the available toolkit to include new methods that provide earlier antemortem detection, higher throughput, and less expense than current immunohistochemistry (IHC) methods. The rectal mucosa near the rectoanal junction is a site of early accumulation of CWD prions and is safely sampled in living animals by pinch biopsy. A fluorescence-based, 96-well format, protein-aggregation assay-the real-time quaking-induced conversion (RT-QuIC) assay-is capable of ultra-sensitive detection of CWD prions. Notably, the recombinant protein substrate is crucial to the assay's performance and is now commercially available. In this blinded independent study, the preclinical diagnostic performance of a standardized RT-QuIC protocol using a commercially sourced substrate (MNPROtein) and a laboratory-produced substrate was studied using mock biopsy samples of the rectal mucosa from 284 white-tailed deer (Odocoileus virginianus). The samples were from a frozen archive of intact rectoanal junctions collected at depopulations of farmed herds positive for CWD in the United States. All deer were pre-clinical at the time of depopulation and infection status was established from the regulatory record, which evaluated the medial retropharyngeal lymph nodes (MRPLNs) and obex by CWD-IHC. A pre-analytic sample precipitation step was found to enhance the protocol's detection limit. Performance metrics were influenced by the choice of RT-QuIC diagnostic cut points (minimum number of positive wells and assay time) and by deer attributes (preclinical infection stage and prion protein genotype). The peak overall diagnostic sensitivities of the protocol were similar for both substrates (MNPROtein, 76.8%; laboratory-produced, 73.2%), though each was achieved at different cut points. Preclinical infection stage and prion protein genotype at codon 96 (G = glycine, S = serine) were primary predictors of sensitivity. The diagnostic sensitivities in late preclinical infections (CWD-IHC positive MPRLNs and obex) were similar, ranging from 96% in GG96 deer to 80% in xS96 deer (x = G or S). In early preclinical infections (CWD-IHC positive MRPLNs only), the diagnostic sensitivity was 64-71% in GG96 deer but only 25% in xS96 deer. These results demonstrate that this standardized RT-QuIC protocol for rectal biopsy samples using a commercial source of substrate produced stratified diagnostic sensitivities similar to or greater than those reported for CWD-IHC but in less than 30 hours of assay time and in a 96-well format. Notably, the RT-QuIC protocol used herein represents a standardization of protocols from several previous studies. Alignment of the sensitivities across these studies suggests the diagnostic performance of the assay is robust given quality reagents, optimized diagnostic criteria, and experienced staff.


Asunto(s)
Ciervos , Mucosa Intestinal , Recto , Enfermedad Debilitante Crónica , Animales , Enfermedad Debilitante Crónica/diagnóstico , Recto/patología , Recto/metabolismo , Mucosa Intestinal/patología , Mucosa Intestinal/metabolismo , Priones/metabolismo , Priones/análisis , Sensibilidad y Especificidad
5.
PLoS One ; 17(11): e0274531, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36383520

RESUMEN

Chronic wasting disease (CWD) is a fatal prion disease affecting cervids (deer, elk, moose). Current methods to monitor individual disease state include highly invasive antemortem rectal biopsy or postmortem brain biopsy. Efficient, sensitive, and selective antemortem and postmortem testing of populations would increase knowledge of the dynamics of CWD epizootics as well as provide a means to track CWD progression into previously unaffected areas. Here, we analyzed the presence of CWD prions in skin samples from two easily accessed locations (ear and belly) from 30 deceased white-tailed deer (Odocoileus viginianus). The skin samples were enzymatically digested and analyzed by real-time quaking-induced conversion (RT-QuIC). The diagnostic sensitivity of the ear and belly skin samples were both 95%, and the diagnostic specificity of the ear and belly skin were both 100%. Additionally, the location of the skin biopsy on the ear does not affect specificity or sensitivity. These results demonstrate the efficacy of CWD diagnosis with skin biopsies using RT-QuIC. This method could be useful for large scale antemortem population testing.


Asunto(s)
Ciervos , Priones , Enfermedad Debilitante Crónica , Animales , Enfermedad Debilitante Crónica/diagnóstico , Enfermedad Debilitante Crónica/patología , Biopsia
6.
Elife ; 52016 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-27873573

RESUMEN

Leaf senescence is an essential part of the plant lifecycle during which nutrients are re-allocated to other tissues. The regulation of leaf senescence is a complex process. However, the underlying mechanism is poorly understood. Here, we uncovered a novel and the pivotal role of Arabidopsis HDA9 (a RPD3-like histone deacetylase) in promoting the onset of leaf senescence. We found that HDA9 acts in complex with a SANT domain-containing protein POWERDRESS (PWR) and transcription factor WRKY53. Our genome-wide profiling of HDA9 occupancy reveals that HDA9 directly binds to the promoters of key negative regulators of senescence and this association requires PWR. Furthermore, we found that PWR is important for HDA9 nuclear accumulation. This study reveals an uncharacterized epigenetic complex involved in leaf senescence and provides mechanistic insights into how a histone deacetylase along with a chromatin-binding protein contribute to a robust regulatory network to modulate the onset of plant aging.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Regulación de la Expresión Génica de las Plantas , Histona Desacetilasas/metabolismo , Factores de Transcripción/metabolismo , Proteínas de Unión al ADN/metabolismo , Multimerización de Proteína
7.
Front Plant Sci ; 5: 267, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24966862

RESUMEN

The phosphoinositide pathway and inositol-1,4,5-triphosphate (InsP3) have been implicated in plant responses to many abiotic stresses; however, their role in response to biotic stress is not well characterized. In the current study, we show that both basal defense and systemic acquired resistance responses are affected in transgenic plants constitutively expressing the human type I inositol polyphosphate 5-phosphatase (InsP 5-ptase) which have greatly reduced InsP3 levels. Flagellin induced Ca(2+)-release as well as the expressions of some flg22 responsive genes were attenuated in the InsP 5-ptase plants. Furthermore, the InsP 5-ptase plants were more susceptible to virulent and avirulent strains of Pseudomonas syringae pv. tomato (Pst) DC3000. The InsP 5-ptase plants had lower basal salicylic acid (SA) levels and the induction of SAR in systemic leaves was reduced and delayed. Reciprocal exudate experiments showed that although the InsP 5-ptase plants produced equally effective molecules that could trigger PR-1 gene expression in wild type plants, exudates collected from either wild type or InsP 5-ptase plants triggered less PR-1 gene expression in InsP 5-ptase plants. Additionally, expression profiles indicated that several defense genes including PR-1, PR-2, PR-5, and AIG1 were basally down regulated in the InsP 5-ptase plants compared with wild type. Upon pathogen attack, expression of these genes was either not induced or showed delayed induction in systemic leaves. Our study shows that phosphoinositide signaling is one component of the plant defense network and is involved in both basal and systemic responses. The dampening of InsP3-mediated signaling affects Ca(2+) release, modulates defense gene expression and compromises plant defense responses.

8.
Plant Physiol ; 149(2): 1127-40, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19052153

RESUMEN

In the animal world, the regulation of ion channels by phosphoinositides (PIs) has been investigated extensively, demonstrating a wide range of channels controlled by phosphatidylinositol (4,5)bisphosphate (PtdInsP2). To understand PI regulation of plant ion channels, we examined the in planta effect of PtdInsP2 on the K+-efflux channel of tobacco (Nicotiana tabacum), NtORK (outward-rectifying K channel). We applied a patch clamp in the whole-cell configuration (with fixed "cytosolic" Ca2+ concentration and pH) to protoplasts isolated from cultured tobacco cells with genetically manipulated plasma membrane levels of PtdInsP2 and cellular inositol (1,4,5)trisphosphate: "Low PIs" had depressed levels of these PIs, and "High PIs" had elevated levels relative to controls. In all of these cells, K channel activity, reflected in the net, steady-state outward K+ currents (IK), was inversely related to the plasma membrane PtdInsP2 level. Consistent with this, short-term manipulations decreasing PtdInsP2 levels in the High PIs, such as pretreatment with the phytohormone abscisic acid (25 microM) or neutralizing the bath solution from pH 5.6 to pH 7, increased IK (i.e. NtORK activity). Moreover, increasing PtdInsP2 levels in controls or in abscisic acid-treated high-PI cells, using the specific PI-phospholipase C inhibitor U73122 (2.5-4 microM), decreased NtORK activity. In all cases, IK decreases stemmed largely from decreased maximum attainable NtORK channel conductance and partly from shifted voltage dependence of channel gating to more positive potentials, making it more difficult to activate the channels. These results are consistent with NtORK inhibition by the negatively charged PtdInsP2 in the internal plasma membrane leaflet. Such effects are likely to underlie PI signaling in intact plant cells.


Asunto(s)
Proteínas de Drosophila/fisiología , Nicotiana/fisiología , Fosfatidilinositol 4,5-Difosfato/farmacología , Bloqueadores de los Canales de Potasio/farmacología , Canales de Potasio/fisiología , Ácido Abscísico/farmacología , Calcio/farmacología , Calcio/fisiología , Células Cultivadas , Proteínas de Drosophila/efectos de los fármacos , Cinética , Fosfatidilinositol 4,5-Difosfato/metabolismo , Potasio/fisiología , Canales de Potasio/efectos de los fármacos , Canales de Potasio de Dominio Poro en Tándem/antagonistas & inhibidores , Canales de Potasio de Dominio Poro en Tándem/fisiología , Nicotiana/citología , Nicotiana/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA