Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Molecules ; 29(3)2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38338407

RESUMEN

Novel bamboo activated carbon (BAC) catalysts decorated with manganese oxides (MnOx) were prepared with varying MnOx contents through a facile one-step redox reaction. Due to the physical anchoring effect of the natural macropore structure for catalyst active components, homogeneous MnOx nanoparticles (NPs), and high specific surface area over catalyst surface, the BAC@MnOx-N (N = 1, 2, 3, 4, 5) catalyst shows encouraging adsorption and catalytic oxidation for indoor formaldehyde (HCHO) removal at room temperature. Dynamic adsorption and catalytic activity experiments were conducted. The higher Smicro (733 m2/g) and Vmicro/Vt (82.6%) of the BAC@MnOx-4 catalyst could facilitate its excellent saturated and breakthrough adsorption capacity (5.24 ± 0.42 mg/g, 2.43 ± 0.22 mg/g). The best performer against 2 ppm HCHO is BAC@MnOx-4 catalyst, exhibiting a maximum HCHO removal efficiency of 97% for 17 h without any deactivation as RH = 0, which is higher than those of other MnOx-based catalysts. The average oxidation state and in situ DRIFTS analysis reveal that abundant oxygen vacancies on the BAC@MnOx-4 catalyst could be identified as surface-active sites of decomposing HCHO into the intermediate species (dioxymethylene and formate). This study provides a potential approach to deposit MnOx nanoparticles onto the BAC surface, and this hybrid BAC@MnOx material is promising for indoor HCHO removal at room temperature.

2.
J Mater Chem B ; 6(40): 6413-6423, 2018 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-32254649

RESUMEN

Even though iron oxide (Fe3O4) nanoparticles are promising materials for magnetic resonance imaging (MRI) contrast agents, their biocompatibility and targeting efficacy still need to be improved. Herein, we modified glycyrrhetinic acid (GA) groups on Fe3O4 nanoparticles (Fe3O4@cGlu-GA) for liver tumor-targeted imaging. To evaluate the biocompatibility of these nanoparticles, we studied their cytotoxicity, hemolysis, and hepatotoxicity. We measured the uptake of Fe3O4@cGlu-GA nanoparticles in normal and liver tumor cells, then we investigated the specificity of Fe3O4@cGlu-GA nanoparticles in mouse models bearing subcutaneous and orthotopic liver tumors. With good biocompatibility and targeting efficacy both in vitro and in vivo, the Fe3O4@cGlu-GA nanoparticles are promising MRI contrast agents with ultralow hepatotoxicity and show great improvement on existing Fe3O4-based nanoparticles.

3.
Adv Healthc Mater ; 7(20): e1800334, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29923342

RESUMEN

In recent years, nanocellulose-based antimicrobial materials have attracted a great deal of attention due to their unique and potentially useful features. In this review, several representative types of nanocellulose and modification methods for antimicrobial applications are mainly focused on. Recent literature related with the preparation and applications of nanocellulose-based antimicrobial materials is reviewed. The fabrication of nanocellulose-based antimicrobial materials for wound dressings, drug carriers, and packaging materials is the focus of the research. The most important additives employed in the preparation of nanocellulose-based antimicrobial materials are presented, such as antibiotics, metal, and metal oxide nanoparticles, as well as chitosan. These nanocellulose-based antimicrobial materials can benefit many applications including wound dressings, drug carriers, and packaging materials. Finally, the challenges of industrial production and potentials for development of nanocellulose-based antimicrobial materials are discussed.


Asunto(s)
Antibacterianos/farmacología , Celulosa/farmacología , Nanopartículas/química , Antibacterianos/química , Materiales Biocompatibles/farmacología , Celulosa/química , Polímeros/química , Polímeros/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA