RESUMEN
N6-Methyladenosine (m6A) is the most prevalent RNA modification in various types of RNA, including circular RNAs (circRNAs). Mounting evidence has shown that circRNAs may play critical roles in diverse malignancies. However, the biological relevance of m6A modification of circRNAs in prostate cancer (PCa) remains unclear and needs to be elucidated. Our data showed that circRBM33 was m6A-modified and was more highly expressed in PCa cells than in normal cells/tissues. The in vitro and in vivo experiments showed that downregulation/upregulation of circRBM33 inhibited/promoted tumour growth and invasion, respectively. Decreasing m6A levels rescued the tumour-promoting effect of circRBM33. Additionally, once modified by m6A, circRBM33 interacts with FMR1 by forming a binary complex that sustains the mRNA stability of PDHA1, a downstream target gene. Suppressed/overexpressed circRBM33 lowered/enhanced the ATP production, the acetyl-CoA levels and the NADH/NAD+ ratio. Moreover, depletion of circRBM33 significantly increased the response sensitivity to androgen receptor signalling inhibitor (ARSI) therapy, including enzalutamide and darolutamide, in prostate tumours. Our study suggested that the m6A-mediated circRBM33-FMR1 complex can activate mitochondrial metabolism by stabilizing PDHA1 mRNA, which promotes PCa progression, and can attenuate circRBM33 increased ARSI effectiveness in PCa treatment. This newly discovered circRNA may serve as a potential therapeutic target for PCa.
Asunto(s)
Neoplasias de la Próstata , ARN Circular , Humanos , Masculino , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil , Próstata , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/genética , Respiración , ARN Circular/genética , Transducción de Señal , Proteínas de Unión al ARN/metabolismoRESUMEN
Tumor-derived exosomes and their contents promote cancer metastasis. Phosphoglycerate mutase 1 (PGAM1) is involved in various cancer-related processes. Nevertheless, the underlying mechanism of exosomal PGAM1 in prostate cancer (PCa) metastasis remains unclear. In this study, we performed in vitro and in vivo to determine the functions of exosomal PGAM1 in the angiogenesis of patients with metastatic PCa. We performed Glutathione-S-transferase pulldown, co-immunoprecipitation, western blotting and gelatin degradation assays to determine the pathway mediating the effect of exosomal PGAM1 in PCa. Our results revealed a significant increase in exosomal PGAM1 levels in the plasma of patients with metastatic PCa compared to patients with non-metastatic PCa. Furthermore, PGAM1 was a key factor initiating PCa cell metastasis by promoting invadopodia formation and could be conveyed by exosomes from PCa cells to human umbilical vein endothelial cells (HUVECs). In addition, exosomal PGAM1 could bind to γ-actin (ACTG1), which promotes podosome formation and neovascular sprouting in HUVECs. In vivo results revealed exosomal PGAM1 enhanced lung metastasis in nude mice injected with PCa cells via the tail vein. In summary, exosomal PGAM1 promotes angiogenesis and could be used as a liquid biopsy marker for PCa metastasis.
Asunto(s)
Exosomas , MicroARNs , Neoplasias de la Próstata , Animales , Humanos , Masculino , Ratones , Actinas/metabolismo , Línea Celular Tumoral , Proliferación Celular , Células Endoteliales/metabolismo , Exosomas/metabolismo , Ratones Desnudos , MicroARNs/metabolismo , Metástasis de la Neoplasia/patología , Fosfoglicerato Mutasa/genética , Fosfoglicerato Mutasa/metabolismo , Neoplasias de la Próstata/patologíaRESUMEN
Background: Prostate cancer (PCa) is one of the most common cancers in males around the globe, and about one-third of patients with localized PCa will experience biochemical recurrence (BCR) after radical prostatectomy or radiation therapy. Reportedly, a proportion of patients with BCR had a poor prognosis. Cumulative studies have shown that RNA modifications participate in the cancer-related transcriptome, but the role of pseudouridylation occurring in lncRNAs in PCa remains opaque. Methods: Spearman correlation analysis and univariate Cox regression were utilized to determine pseudouridylation-related lncRNAs with prognostic value in PCa. Prognostic pseudouridylation-related lncRNAs were included in the LASSO (least absolute shrinkage and selection operator) regression algorithm to develop a predictive model. KM (Kaplan-Meier) survival analysis and ROC (receiver operating characteristic) curves were applied to validate the constructed model. A battery of biological cell assays was conducted to confirm the cancer-promoting effects of RP11-468E2.5 in the model. Results: A classifier containing five pseudouridine-related lncRNAs was developed to stratify PCa patients on BCR and named the "ψ-lnc score." KM survival analysis showed patients in the high ψ-lnc score group experienced BCR more than those in the low ψ-lnc score group. ROC curves demonstrated that ψ-lnc score outperformed other clinical indicators in BCR prediction. An external dataset, GSE54460, was utilized to validate the predictive model's efficacy and authenticity. A ceRNA (competitive endogenous RNA) network was constructed to explore the model's potential molecular functions and was annotated through GO (Gene Ontology) and KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway analyses. RP11-468E2.5 was picked for further investigation, including pan-cancer analysis and experimental validation. Preliminarily, RP11-468E2.5 was confirmed as a tumor promoter. Conclusion: We provide some evidence that pseudouridylation in lncRNA played a role in the development of PCa and propose a novel prognostic classifier for clinical practice.
RESUMEN
BACKGROUND: The gut microbiota is reportedly involved in the progression and chemoresistance of various human malignancies. However, the underlying mechanisms behind how it exerts some effect on prostate cancer, as an extra-intestinal tumor, in a contact-independent way remain elusive and deserve exploration. Antibiotic exposure, one of the various factors affecting the gut microbiota community and capable of causing gut dysbiosis, is associated with multiple disorders. This study aims to preliminarily clarify the link between gut dysbiosis and prostate cancer. RESULTS: First, we discovered that perturbing the gut microbiota by consuming broad-spectrum antibiotics in water promoted the growth of subcutaneous and orthotopic tumors in mice. Fecal microbiota transplantation could transmit the effect of antibiotic exposure on tumor growth. Then, 16S rRNA sequencing for mouse feces indicated that the relative abundance of Proteobacteria was significantly higher after antibiotic exposure. Meanwhile, intratumoral lipopolysaccharide (LPS) profoundly increased under the elevation of gut permeability. Both in vivo and in vitro experiments revealed that the NF-κB-IL6-STAT3 axis activated by intratumoral LPS facilitated prostate cancer proliferation and docetaxel chemoresistance. Finally, 16S rRNA sequencing of patients' fecal samples revealed that Proteobacteria was enriched in patients with metastatic prostate cancer and was positively correlated with plasma IL6 level, regional lymph node metastasis status, and distant metastasis status. The receiver operating characteristic (ROC) curves showed that the relative abundance of Proteobacteria had better performance than the prostate-specific antigen (PSA) level in predicting the probability of distant metastasis in prostate cancer (area under the ROC curve, 0.860; p < 0.001). CONCLUSION: Collectively, this research demonstrated that gut dysbiosis, characterized by the enrichment of Proteobacteria due to antibiotic exposure, resulted in the elevation of gut permeability and intratumoral LPS, promoting the development of prostate cancer via the NF-κB-IL6-STAT3 axis in mice. Considering findings from human patients, Proteobacteria might act as an intestinal biomarker for progressive prostate cancer. Video Abstract.
Asunto(s)
Disbiosis , Neoplasias de la Próstata , Animales , Antibacterianos/farmacología , Docetaxel/farmacología , Disbiosis/microbiología , Heces/microbiología , Humanos , Interleucina-6 , Lipopolisacáridos , Masculino , Ratones , FN-kappa B , Proteobacteria/genética , ARN Ribosómico 16S/genética , Factor de Transcripción STAT3/genéticaRESUMEN
The fat mass and obesity-associated protein (FTO) is an N6-Methyladenosine (m6A) demethylase, which has been revealed to play critical roles in tumorigenesis. However, its role in the development and progression of prostate cancer (PCa) remains poorly understood. Here, we aimed to investigate the function and clinical relevance of FTO in PCa. Our results demonstrated that FTO was notably downregulated in PCa tissues compared with the paired normal tissues. In addition, the decreased expression of FTO was correlated with poor prognosis of PCa. Functional experiments showed that depletion of FTO promoted the proliferation and metastasis of PCa both in vitro and in vivo. Conversely, ectopic expression of FTO exhibited the opposite effects. Combined with RNA-sequencing, MeRIP-RT-qPCR, and mRNA stability assays indicated chloride intracellular channel 4(CLIC4) was a functional target of FTO-mediated m6A modification. FTO depletion significantly increased the m6A level of CLIC4 mRNA and then reduced the mRNA stability. In conclusion, our findings suggest that FTO suppresses PCa proliferation and metastasis through reducing the degradation of CLIC4 mRNA in an m6A dependent manner. FTO may be used as a promising novel therapeutic target and prognostic evaluation biomarker for PCa.
RESUMEN
Prostate cancer (PCa) is a common high-incidence malignancy in men, some of whom develop biochemical recurrence (BCR) in the advanced stage. However, there are currently no accurate prognostic indicators of BCR in PCa. The aim of our study was to identify an autophagy-related circular RNA prognostic factor of BCR for patients with PCa. In this study, immunochemistry revealed that the classic autophagy marker MAP1LC3B was positively correlated with Gleason score. Least absolute shrinkage and selector operator regression were conducted to develop a novel prognostic model with tenfold cross-validation and an L1 penalty. Five autophagy-related circRNA signatures were included in the prognostic model. Patients with PCa were ultimately divided into high- and low-risk groups, based on the median risk score. Patients with PCa, who had a high risk score, were more likely to develop BCR in a shorter period of time. Univariate and multivariate Cox regression analyses demonstrated that the risk score was an independent variable for predicting BCR in PCa. In addition, a prognostic nomogram integrated with the risk score and numerous clinicopathological parameters was developed to accurately predict 3- and 5-year BCR of patients with PCa. Finally, the hsa_circ_0001747 signature was selected for further experimental verification in vitro and in vivo, which showed that downregulated hsa_circ_0001747 might facilitate PCa via augmenting autophagy. Our findings indicate that the autophagy-related circRNA signature hsa_circ_0001747 may serve as a promising indicator for BCR prediction in patients with PCa.
Asunto(s)
Autofagia/genética , Recurrencia Local de Neoplasia/genética , Recurrencia Local de Neoplasia/patología , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología , ARN Circular/metabolismo , Animales , Línea Celular Tumoral , Proliferación Celular/genética , Supervivencia Celular/genética , Supervivencia sin Enfermedad , Regulación hacia Abajo/genética , Regulación Neoplásica de la Expresión Génica , Redes Reguladoras de Genes , Humanos , Estimación de Kaplan-Meier , Masculino , Ratones Endogámicos C57BL , Ratones Desnudos , MicroARNs/genética , MicroARNs/metabolismo , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Invasividad Neoplásica , Nomogramas , Pronóstico , Modelos de Riesgos Proporcionales , Empalme del ARN/genética , ARN Circular/genética , Factores de RiesgoRESUMEN
The effects of 5-methylcytosine in RNA (m5C) in various human cancers have been increasingly studied recently; however, the m5C regulator signature in prostate cancer (PCa) has not been well established yet. In this study, we identified and characterized a series of m5C-related long non-coding RNAs (lncRNAs) in PCa. Univariate Cox regression analysis and least absolute shrinkage and selector operation (LASSO) regression analysis were implemented to construct a m5C-related lncRNA prognostic signature. Consequently, a prognostic m5C-lnc model was established, including 17 lncRNAs: MAFG-AS1, AC012510.1, AC012065.3, AL117332.1, AC132192.2, AP001160.2, AC129510.1, AC084018.2, UBXN10-AS1, AC138956.2, ZNF32-AS2, AC017100.1, AC004943.2, SP2-AS1, Z93930.2, AP001486.2, and LINC01135. The high m5C-lnc score calculated by the model significantly relates to poor biochemical recurrence (BCR)-free survival (p < 0.0001). Receiver operating characteristic (ROC) curves and a decision curve analysis (DCA) further validated the accuracy of the prognostic model. Subsequently, a predictive nomogram combining the prognostic model with clinical features was created, and it exhibited promising predictive efficacy for BCR risk stratification. Next, the competing endogenous RNA (ceRNA) network and lncRNA-protein interaction network were established to explore the potential functions of these 17 lncRNAs mechanically. In addition, functional enrichment analysis revealed that these lncRNAs are involved in many cellular metabolic pathways. Lastly, M AFG-AS1 was selected for experimental validation; it was upregulated in PCa and probably promoted PCa proliferation and invasion in vitro. These results offer some insights into the m5C's effects on PCa and reveal a predictive model with the potential clinical value to improve the prognosis of patients with PCa.