Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Mol Cell ; 37(4): 516-28, 2010 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-20188670

RESUMEN

The disulfide relay system in the intermembrane space of mitochondria is of crucial importance for mitochondrial biogenesis. Major players in this pathway are the oxidoreductase Mia40 that oxidizes substrates and the sulfhydryl oxidase Erv1 that reoxidizes Mia40. To analyze in detail the mechanism of this oxidative pathway and the interplay of its components, we reconstituted the complete process in vitro using purified cytochrome c, Erv1, Mia40, and Cox19. Here, we demonstrate that Erv1 dimerizes noncovalently and that the subunits of this homodimer cooperate in intersubunit electron exchange. Moreover, we show that Mia40 promotes complete oxidation of the substrate Cox19. The efficient formation of disulfide bonds is hampered by the formation of long-lived, partially oxidized intermediates. The generation of these side products is efficiently counteracted by reduced glutathione. Thus, our findings suggest a role for a glutathione-dependent proofreading during oxidative protein folding by the mitochondrial disulfide relay.


Asunto(s)
Disulfuros/metabolismo , Glutatión/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro/metabolismo , Multimerización de Proteína , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Secuencia de Aminoácidos , Secuencia Conservada , Transporte de Electrón , Proteínas de Transporte de Membrana Mitocondrial/genética , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Proteínas Mitocondriales/química , Proteínas Mitocondriales/genética , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Datos de Secuencia Molecular , Oxidación-Reducción , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro/química , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro/genética , Unión Proteica , Pliegue de Proteína , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Alineación de Secuencia
2.
EMBO J ; 31(22): 4348-58, 2012 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-22990235

RESUMEN

Mia40 is a recently identified oxidoreductase in the intermembrane space (IMS) of mitochondria that mediates protein import in an oxidation-dependent reaction. Substrates of Mia40 that were identified so far are of simple structure and receive one or two disulphide bonds. Here we identified the protease Atp23 as a novel substrate of Mia40. Atp23 contains ten cysteine residues which are oxidized during several rounds of interaction with Mia40. In contrast to other Mia40 substrates, oxidation of Atp23 is not essential for its import; an Atp23 variant in which all ten cysteine residues were replaced by serine residues still accumulates in mitochondria in a Mia40-dependent manner. In vitro Mia40 can mediate the folding of wild-type Atp23 and prevents its aggregation. In these reactions, the hydrophobic substrate-binding pocket of Mia40 was found to be essential for its chaperone-like activity. Thus, Mia40 plays a much broader role in import and folding of polypeptides than previously expected and can serve as folding factor for proteins with complex disulphide patterns as well as for cysteine-free polypeptides.


Asunto(s)
Metaloproteasas/metabolismo , Mitocondrias/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Chaperonas Moleculares/metabolismo , Pliegue de Proteína , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Membranas Mitocondriales/metabolismo , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Transporte de Proteínas/fisiología
3.
Pharmacol Res ; 111: 642-651, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27468648

RESUMEN

During the last decades, small inorganic molecules like reactive oxygen species (ROS), nitric oxide (NO), carbon monoxide (CO) and even the highly toxic hydrogen sulfide (H2S) have been evolved as important signaling molecules that trigger crucial cellular processes by regulating the activity of kinases, phosphatases and transcription factors. These redox molecules use similar target structures and therefore, the composition of the complex "redox environment" determines the final outcome of signaling processes and may subsequently also affect the behavior of a cell in an inflammatory environment. Here, we discuss the role of H2S in this complex interplay with a focus on the transcription factors Nrf2 and NFκB.


Asunto(s)
Sulfuro de Hidrógeno/metabolismo , Inflamación/metabolismo , Compuestos de Sulfhidrilo/metabolismo , Animales , Humanos , Oxidación-Reducción
4.
Adv Exp Med Biol ; 748: 41-64, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22729854

RESUMEN

Depending on the organism, mitochondria consist approximately of 500-1,400 different proteins. By far most of these proteins are encoded by nuclear genes and synthesized on cytosolic ribosomes. Targeting signals direct these proteins into mitochondria and there to their respective subcompartment: the outer membrane, the intermembrane space (IMS), the inner membrane, and the matrix. Membrane-embedded translocation complexes allow the translocation of proteins across and, in the case of membrane proteins, the insertion into mitochondrial membranes. A small number of proteins are encoded by the mitochondrial genome: Most mitochondrial translation products represent hydrophobic proteins of the inner membrane which-together with many nuclear-encoded proteins-form the respiratory chain complexes. This chapter gives an overview on the mitochondrial protein translocases and the mechanisms by which they drive the transport and assembly of mitochondrial proteins.


Asunto(s)
Proteínas Mitocondriales/fisiología , Animales , Complejo IV de Transporte de Electrones/fisiología , Humanos , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Membranas Mitocondriales/metabolismo , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Proteínas Nucleares/fisiología , Transporte de Proteínas
5.
EMBO Rep ; 9(11): 1107-13, 2008 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-18787558

RESUMEN

A disulphide relay system mediates the import of cysteine-containing proteins into the intermembrane space of mitochondria. This system consists of two essential proteins, Mia40 and Erv1, which bind to newly imported proteins by disulphide transfer. A third component, Hot13, was proposed to be important in the biogenesis of cysteine-rich proteins of the intermembrane space, but the molecular function of Hot13 remained unclear. Here, we show that Hot13, a conserved zinc-binding protein, interacts functionally and physically with the import receptor Mia40. It improves the Erv1-dependent oxidation of Mia40 both in vivo and in vitro. As a consequence, in mutants lacking Hot13, the import of substrates of Mia40 is impaired, particularly in the presence of zinc ions. In mitochondria as well as in vitro, Hot13 can be functionally replaced by zinc-binding chelators. We propose that Hot13 maintains Mia40 in a zinc-free state, thereby facilitating its efficient oxidation by Erv1.


Asunto(s)
Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Proteínas Mitocondriales/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Secuencia de Aminoácidos , Proteínas Portadoras/metabolismo , Mitocondrias/metabolismo , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Proteínas Mitocondriales/química , Datos de Secuencia Molecular , Proteínas de Saccharomyces cerevisiae/química , Alineación de Secuencia
6.
J Mol Med (Berl) ; 95(3): 257-271, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28054119

RESUMEN

Renal mesangial cells are regarded as main players in glomerular inflammatory diseases. To investigate a possible crosstalk between inflammatory and hypoxia-driven signaling processes, we stimulated cultured mouse mesangial cells with different inflammatory agents and analyzed the expression of prolyl hydroxylase domain containing proteins (PHDs), the main regulators of hypoxia-inducible factor (HIF) stability. Administration of IL-1ß (1 nM) and TNF-α (1 nM), a combination further referred to as cytokine mix (CM), resulted in a fivefold increase in PHD3 but not PHD1 and PHD2 mRNA expression compared to untreated controls. In contrast, a combination of IL-1ß, TNF-α with lipopolysaccharide (10 µg/ml), and interferon-γ (20 ng/ml) designated as CM+ showed a high (60-fold) induction of PHD3 and a moderate (twofold) induction of PHD2 mRNA expression. Interestingly, CM+ but not CM induced the expression of inducible NO synthase and endogenously produced NO was responsible for the immense induction of PHD3 in mesangial cells treated with CM+. We found that CM+ affected PHD3 expression mainly via the NO/HIF axis, whereas PHD3 regulation by CM occurred in a NF-κB-dependent manner. In turn, silencing of PHD3 expression resulted in a decrease in the mRNA expression of ICAM-1, MIP-2, MCP-1, and CXCL-10, which are under control of NF-κB. In a rat model of mesangio-proliferative glomerulonephritis, PHD3 mRNA and protein expression was markedly induced and this effect was nearly abolished when rats were treated with the iNOS-specific inhibitor L-NIL, thus confirming our findings also in vivo. KEY MESSAGE: PHD3 expression induced by cytokines is NF-κB dependent in mesangial cells. Endogenously produced NO further augments PHD3 expression via HIF-1α. PHD3 expression is induced by NO in anti-Thy-1 glomerulonephritis.


Asunto(s)
Glomerulonefritis/genética , Óxido Nítrico/inmunología , Procolágeno-Prolina Dioxigenasa/genética , Regulación hacia Arriba , Animales , Células Cultivadas , Glomerulonefritis/inmunología , Glomerulonefritis/patología , Humanos , Interleucina-1beta/inmunología , Células Mesangiales/inmunología , Células Mesangiales/metabolismo , Células Mesangiales/patología , Ratones , Ratones Endogámicos C57BL , FN-kappa B/inmunología , Procolágeno-Prolina Dioxigenasa/inmunología , ARN Mensajero/genética , Factor de Necrosis Tumoral alfa/inmunología
7.
Sci Rep ; 6: 29808, 2016 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-27411966

RESUMEN

H2S is an important signalling molecule involved in diverse biological processes. It mediates the formation of cysteine persulfides (R-S-SH), which affect the activity of target proteins. Like thiols, persulfides show reactivity towards electrophiles and behave similarly to other cysteine modifications in a biotin switch assay. In this manuscript, we report on qPerS-SID a mass spectrometry-based method allowing the isolation of persulfide containing peptides in the mammalian proteome. With this method, we demonstrated that H2S donors differ in their efficacy to induce persulfides in HEK293 cells. Furthermore, data analysis revealed that persulfide formation affects all subcellular compartments and various cellular processes. Negatively charged amino acids appeared more frequently adjacent to cysteines forming persulfides. We confirmed our proteomic data using pyruvate kinase M2 as a model protein and showed that several cysteine residues are prone to persulfide formation finally leading to its inactivation. Taken together, the site-specific identification of persulfides on a proteome scale can help to identify target proteins involved in H2S signalling and enlightens the biology of H2S and its releasing agents.


Asunto(s)
Péptidos/química , Proteoma/química , Proteómica/métodos , Sulfuros/química , Espectrometría de Masas en Tándem/métodos , Secuencia de Aminoácidos , Cromatografía Liquida/métodos , Cisteína/análogos & derivados , Cisteína/química , Cisteína/metabolismo , Disulfuros/química , Disulfuros/metabolismo , Células HEK293 , Humanos , Sulfuro de Hidrógeno/química , Sulfuro de Hidrógeno/metabolismo , Péptidos/metabolismo , Proteoma/metabolismo , Sulfuros/metabolismo
8.
Biochem Pharmacol ; 93(3): 362-9, 2015 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-25437456

RESUMEN

Glomerular mesangial cells are smooth muscle cell-like pericytes and are regarded as key players in kidney diseases. In an inflammatory setting, these cells produce high amounts of inflammatory cytokines, chemokines and redox mediators such as reactive oxygen species or nitric oxide (NO). The temporal production of ROS, NO and other redox mediators markedly contributes to the final outcome of inflammatory diseases. Recently, we reported that platelet-derived growth factor forced mesangial cells to activate the regulatory subunit of protein kinase A (PKA RI) by a redox-dependent mechanism but independent from changes in cyclic AMP. This prompted us to further analyze the dimerization of PKA RI and activation of PKA-driven signalling in an inflammatory context. Stimulation of rat mesangial cells with interleukin-1ß and tumour necrosis factor-α [2 nM] induced the formation of PKA RI heterodimers in a time-dependent manner. PKA RI dimerization was accompanied with the formation of ROS, NO and peroxynitrite as well as a depletion of reduced glutathione. Furthermore, dimerization of PKA RI was paralleled by enhanced activity of PKA as shown by the phosphorylation of vasodilator-stimulated phosphoprotein (VASP) at serine 157 that was independent of the formation of cyclic AMP. Remarkably, exogenously administered peroxynitrite potently induced dimerization of PKA RI, whereas pharmacologic inhibition of inducible NO synthase (iNOS) and scavenging of peroxynitrite reduced PKA RI dimerization and VASP phosphorylation to control levels thus clearly indicating a causal role for endogenously formed peroxynitrite on PKA signalling. Consequently, the treatment of inflammatory diseases with anti-oxidants or NOS inhibitors may alter PKA activity.


Asunto(s)
Proteínas Quinasas Dependientes de AMP Cíclico/biosíntesis , Citocinas/farmacología , Riñón/efectos de los fármacos , Riñón/enzimología , Células Mesangiales/efectos de los fármacos , Células Mesangiales/enzimología , Transducción de Señal/efectos de los fármacos , Animales , Células Cultivadas , Inducción Enzimática/efectos de los fármacos , Inducción Enzimática/fisiología , Oxidación-Reducción/efectos de los fármacos , Ratas , Transducción de Señal/fisiología
9.
Brain Res ; 1624: 380-389, 2015 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-26271715

RESUMEN

Accumulating lines of evidence indicate that hydrogen sulfide (H2S) contributes to the processing of chronic pain. However, the sources of H2S production in the nociceptive system are poorly understood. Here we investigated the expression of the H2S releasing enzyme cystathionine γ-lyase (CSE) in the nociceptive system and characterized its role in chronic pain signaling using CSE deficient mice. We show that paw inflammation and peripheral nerve injury led to upregulation of CSE expression in dorsal root ganglia. However, conditional knockout mice lacking CSE in sensory neurons as well as global CSE knockout mice demonstrated normal pain behaviors in inflammatory and neuropathic pain models as compared to WT littermates. Thus, our results suggest that CSE is not critically involved in chronic pain signaling in mice and that sources different from CSE mediate the pain relevant effects of H2S.


Asunto(s)
Cistationina gamma-Liasa/metabolismo , Ganglios Espinales/metabolismo , Sulfuro de Hidrógeno/metabolismo , Inflamación/metabolismo , Neuralgia/metabolismo , Animales , Cistationina gamma-Liasa/genética , Modelos Animales de Enfermedad , Formaldehído/toxicidad , Regulación de la Expresión Génica/genética , Hiperalgesia/etiología , Hiperalgesia/metabolismo , Inflamación/inducido químicamente , Inflamación/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Actividad Motora/fisiología , Neuralgia/patología , Dimensión del Dolor , Médula Espinal/metabolismo , Regulación hacia Arriba , Zimosan/farmacología
10.
Dev Cell ; 28(1): 30-42, 2014 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-24360785

RESUMEN

Most mitochondrial proteins are synthesized in the cytosol and directed into the organelle; matrix proteins contain presequences that guide them through translocases in contact sites of the outer and inner membrane. In contrast, the import of many intermembrane space proteins depends on cysteine residues and the oxidoreductase Mia40. Here, we show that both import machineries can cooperate in the biogenesis of matrix proteins. Mrp10, a conserved protein of the mitochondrial ribosome, interacts with Mia40 during passage into the matrix. Mrp10 contains an unconventional proline-rich matrix-targeting sequence that renders import intermediates accessible to Mia40. Although oxidation of Mrp10 is not essential for its function in mitochondrial translation, the disulfide bonds prevent proteolytic degradation of Mrp10 and thereby counteract instability of the mitochondrial genome. The unconventional import pathway of Mrp10 is presumably part of a quality-control circle that connects mitochondrial ribosome biogenesis to the functionality of the mitochondrial disulfide relay.


Asunto(s)
Disulfuros/metabolismo , Mitocondrias/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Membranas Mitocondriales/metabolismo , Proteínas Ribosómicas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Disulfuros/química , Proteínas de Transporte de Membrana Mitocondrial/genética , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Oxidación-Reducción , Estabilidad Proteica , Transporte de Proteínas , Proteínas Ribosómicas/química , Proteínas Ribosómicas/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética
11.
Antioxid Redox Signal ; 18(13): 1597-612, 2013 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-23198688

RESUMEN

AIMS: To identify yeast mutants that show a strong redox dependence of the ability to respire, we systematically screened a yeast deletion library for mutants that require the presence of reductants for growth on nonfermentable carbon sources. RESULTS: Respirative growth of 44 yeast mutants was significantly improved by the addition of dithiothreitol or glutathione. Two mutants that were strongly stimulated by reductants lacked the proteins Cmc1 and Coa4. Both proteins belong to the family of "twin Cx(9)C" proteins present in the intermembrane space of mitochondria. Deletion of CMC1 or COA4 leads to assembly defects of cytochrome c oxidase, in particular to the lack of Cox1 and rapid degradation of Cox2 and Cox3. Interestingly, the presence of the reductants does not suppress these assembly defects and the levels of cytochrome c oxidase remain reduced. Reductants and antioxidants such as ascorbic acid rather counteract the effects of hydrogen peroxide that is produced from partially assembled cytochrome c oxidase intermediates. INNOVATION: Here we show that oxidative stress generated by the accumulation of partially assembled respiratory chain complexes prevents growth on carbon sources that force cells to respire. CONCLUSION: Defects in the assembly of cytochrome c oxidase can lead to increased production of hydrogen peroxide, which is sensed in cells and blocks their proliferation. We propose that this redox-regulated feedback regulation specifically slows down the propagation of cells carrying respiratory chain mutations in order to select for cells of high mitochondrial fitness.


Asunto(s)
Puntos de Control del Ciclo Celular , Complejo IV de Transporte de Electrones/metabolismo , Estrés Oxidativo , Carbono/metabolismo , Catalasa/genética , Catalasa/metabolismo , Citosol/metabolismo , Metabolismo Energético , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Expresión Génica , Glicerol/metabolismo , Peróxido de Hidrógeno/metabolismo , Mitocondrias/genética , Mitocondrias/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Mutación , Sustancias Reductoras/farmacología , Levaduras/efectos de los fármacos , Levaduras/genética , Levaduras/crecimiento & desarrollo , Levaduras/metabolismo
12.
Mol Biol Cell ; 22(20): 3749-57, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21865594

RESUMEN

Superoxide dismutase 1 (Sod1) is an important antioxidative enzyme that converts superoxide anions to hydrogen peroxide and water. Active Sod1 is a homodimer containing one zinc ion, one copper ion, and one disulfide bond per subunit. Maturation of Sod1 depends on its copper chaperone (Ccs1). Sod1 and Ccs1 are dually localized proteins that reside in the cytosol and in the intermembrane space of mitochondria. The import of Ccs1 into mitochondria depends on the mitochondrial disulfide relay system. However, the exact mechanism of this import process has been unclear. In this study we detail the import and folding pathway of Ccs1 and characterize its interaction with the oxidoreductase of the mitochondrial disulfide relay Mia40. We identify cysteines at positions 27 and 64 in domain I of Ccs1 as critical for mitochondrial import and interaction with Mia40. On interaction with Mia40, these cysteines form a structural disulfide bond that stabilizes the overall fold of domain I. Although the cysteines are essential for the accumulation of functional Ccs1 in mitochondria, they are dispensable for the enzymatic activity of cytosolic Ccs1. We propose a model in which the Mia40-mediated oxidative folding of domain I controls the cellular distribution of Ccs1 and, consequently, active Sod1.


Asunto(s)
Citosol/metabolismo , Mitocondrias/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Membranas Mitocondriales/metabolismo , Chaperonas Moleculares , Transporte de Proteínas/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Transducción de Señal/genética , Clonación Molecular , Cisteína/química , Cisteína/metabolismo , Disulfuros/metabolismo , Escherichia coli , Regulación Fúngica de la Expresión Génica , Mitocondrias/genética , Proteínas de Transporte de Membrana Mitocondrial/genética , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Mutación , Oxidación-Reducción , Plásmidos , Pliegue de Proteína , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Superóxido Dismutasa/genética , Superóxido Dismutasa/metabolismo , Superóxido Dismutasa-1 , Transducción Genética , Transformación Bacteriana
13.
J Mol Biol ; 393(2): 356-68, 2009 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-19703468

RESUMEN

The Mia40-Erv1 disulfide relay system is of high importance for mitochondrial biogenesis. Most so far identified substrates of this machinery contain either two cysteine-x(3)-cysteine (twin Cx(3)C) or two cysteine-x(9)-cysteine (twin Cx(9)C) motifs. While the first group is composed of well-characterized components of the mitochondrial import machinery, the molecular function of twin Cx(9)C proteins still remains unclear. To systematically characterize this protein family, we performed a database search to identify the full complement of Cx(9)C proteins in yeast. Thereby, we identified 14 potential family members, which, with one exception, are conserved among plants, fungi, and animals. Among these, three represent novel proteins, which we named Cmc2 to 4 (for Cx(9)C motif-containing protein) and which we demonstrated to be dependent for import on the Mia40-Erv1 disulfide relay. By testing deletion mutants of all 14 proteins for function of the respiratory chain, we found a critical function of most of these proteins for the assembly or stability of respiratory chain complexes. Our data suggest that already early during the evolution of eukaryotic cells, a multitude of twin Cx(9)C proteins developed, which exhibit largely nonredundant roles critical for the biogenesis of enzymes of the respiratory chain in mitochondria.


Asunto(s)
Proteínas Mitocondriales/química , Proteínas Mitocondriales/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Secuencia de Aminoácidos , Biología Computacional , Genoma Fúngico/genética , Microscopía Fluorescente , Proteínas de Transporte de Membrana Mitocondrial/química , Proteínas de Transporte de Membrana Mitocondrial/genética , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Proteínas Mitocondriales/genética , Datos de Secuencia Molecular , Sistemas de Lectura Abierta , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro/química , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro/genética , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro/metabolismo , Proteínas Ribosómicas/química , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Homología de Secuencia de Aminoácido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA