Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Nanobiotechnology ; 20(1): 105, 2022 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-35246160

RESUMEN

Advancements in understanding and engineering of virus-based nanomaterials (VBNs) for biomedical applications motivate a need to explore the interfaces between VBNs and other biomedically-relevant chemistries and materials. While several strategies have been used to investigate some of these interfaces with promising initial results, including VBN-containing slow-release implants and VBN-activated bioceramic bone scaffolds, there remains a need to establish VBN-immobilized three dimensional materials that exhibit improved stability and diffusion characteristics for biosensing and other analyte-capture applications. Silica sol-gel chemistries have been researched for biomedical applications over several decades and are well understood; various cellular organisms and biomolecules (e.g., bacteria, algae, enzymes) have been immobilized in silica sol-gels to improve viability, activity, and form factor (i.e., ease of use). Here we present the immobilization of an antibody-binding VBN in silica sol-gel by pore confinement. We have shown that the resulting system is sufficiently diffuse to allow antibodies to migrate in and out of the matrix. We also show that the immobilized VBN is capable of antibody binding and elution functionality under different buffer conditions for multiple use cycles. The promising results of the VBN and silica sol-gel interface indicate a general applicability for VBN-based bioseparations and biosensing applications.


Asunto(s)
Nanopartículas , Virus de Plantas , Geles , Inmunoadsorbentes , Gel de Sílice , Dióxido de Silicio/química
2.
Langmuir ; 34(29): 8560-8570, 2018 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-29950095

RESUMEN

Cationic and anionic surfactant mixtures can form viscous films that dominate the rheology and stability of micrometer-sized droplet suspensions. In this work, we use micropipette aspiration to study the mechanical properties of mixed surfactant surface films of anionic sodium dodecyl sulfate (SDS) and cationic dodecylamine hydrochloride (DAH) on alkane and lipid droplets. For octane droplets, SDS was found to decrease the surface tension until a minimum of 5 ± 1 mJ/m2 was reached after the critical micelle concentration (cmc). The surface viscosity of the droplets was found to be on the order of 10-3 mN s/m at an SDS concentration of 10 mM. An addition of 0.2 mM of DAH was found to increase this viscosity to a peak of 0.24 ± 0.01 mN s/m. Similar to octane, the surface tension of dodecane decreased to a value of 7.7 ± 0.4 mJ/m2 at SDS concentrations above cmc. Unlike with octane, however, the dodecane droplets had a significant surface viscosity of 0.37 ± 0.01 mN s/m when only the 10 mM SDS film was present. An addition of DAH caused a decrease in this viscosity initially, before rising to a peak viscosity of 0.45 ± 0.01 mN s/m at a DAH concentration of 0.15 mM. We speculate that the peaks in viscosities were the result of the completions of a phase change associated with microcrystalline SDS/DAH grains growing in the film at the surface of the droplets. Fluorescence microscopy and visual observations provided further evidence that these films can show rigid microcrystalline-like structure. Further work done with soybean oil in the same conditions and with a lipid film, simulating biological lipid droplets, confirmed that lipid droplets behave rheologically similar to alkanes in the presence of these mixed surfactant and lipid films. These results imply that droplet mechanics may be heavily influenced by the presence of microcrystalline grains in the oil-water systems with complex surfactant mixtures.

3.
Langmuir ; 34(25): 7488-7496, 2018 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-29874091

RESUMEN

We study bacteriorhodopsin (BR) in its native purple membrane encapsulated within amorphous titanium dioxide, or titania, gels and in the presence of titania sol particles to explore this system for hydrogen production. Förster resonance energy transfer between BR and titanium dioxide sol particles was used to conclude that there is nanometer-scale proximity of bacteriorhodopsin to the titanium dioxide. The detection of BR-titania sol aggregates by fluorescence anisotropy and particle sizing indicated the affinity amorphous titania has for BR without the use of additional cross-linkers. UV-vis spectroscopy of BR-titania gels shows that methanol addition did not denature BR at a 25 mM concentration presence as a sacrificial electron donor. Additionally, confinement of BR in the gels significantly limited protein denaturation at higher concentration of added methanol or ethanol. Subsequently, titania gels fabricated through the sol-gel process using a titanium ethoxide precursor, water, and the addition of 25 mM methanol were used to encapsulate BR and a platinum reduction catalyst for the production of hydrogen gas under white light irradiation. The inclusion of 5 µM bacteriorhodopsin resulted in a hydrogen production rate of about 3.8 µmol hydrogen mL-1 h-1, an increase of 52% compared to gels containing no protein. Electron transfer and proton pumping by BR in close proximity to the titania gel surface are feasible explanations for the enhanced production of hydrogen without the need to cross-link BR to the titania gel. This work sets the stage for further developments of amorphous, rather than crystalline, titania-encapsulated bacteriorhodopsin for solar-driven hydrogen production through water splitting.

4.
Langmuir ; 33(40): 10483-10491, 2017 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-28903007

RESUMEN

Here we examine how the force on an atomic force microscope (AFM) tip varies as it approaches micellar surfactant films, and use this information to discern the film's surface structure and Young's modulus. Rows of wormlike hemimicelles were created at a graphite interface using 10 mM sodium dodecyl sulfate (SDS). We found that the repulsive force on a silicon nitride tip as it approached the surface was exponential, with a decay length of 2.0 ± 0.1 nm. The addition of Na2SO4 was found to cause a change in this behavior, with a clear split into two exponential regions at concentrations above 1 mM. We also observed that the range of these forces increased with added salt from ∼15 nm in pure SDS to ∼20 nm at a Na2SO4 concentration of 1.34 mM. These forces were inconsistent with electrostatic repulsion, and were determined to be steric in nature. We show that the behavior at higher salt concentrations is consistent with the theory of polyelectrolyte brushes in the osmotic regime. From this, we hypothesize the presence of micellar brushes at the surface that behave similarly to adsorbed polymer chains. In addition, the Young's modulus of the film was taken from data near the interface using Sneddon's model, and found to be 80 ± 40 MPa. Similar experiments were performed with 10 mM dodecylamine hydrochloride (DAH) solutions in the presence of added magnesium chloride. The decay length for the pure DAH solution was found to be 2.6 ± 0.3 nm, and the addition of 1.34 mM of MgCl2 caused this to increase to 3.7 ± 0.3 nm. No decay length splitting was observed for DAH. We conclude that the behavior at the surface resembles that of an uncharged polymer brush, as the ionic and surface charge densities are much lower for DAH than for SDS.

5.
Langmuir ; 33(9): 2122-2132, 2017 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-28170269

RESUMEN

In this work, we study the mechanical properties of sodium dodecyl sulfate (SDS) and dodecylamine hydrochloride (DAH) micellar films at a graphite surface via atomic force microscopy (AFM). Breakthrough forces for these films were measured using silicon nitride cantilevers and were found to be 1.1 ± 0.1 nN for a 10 mM DAH film and 3.0 ± 0.3 nN for a 10 mM SDS film. For 10 mM SDS films, it was found that the addition of 1.5 mM of NaCl, Na2SO4, or MgCl2 produced a 50-70% increase in the measured breakthrough force. Similar results were found for 10 mM DAH films when NaCl and MgCl2 were added. A model was developed on the basis of previous work on lipid films and CMC data gathered via spectrofluorometry measurements to predict the change in normalized breakthrough forces with added salt concentrations for SDS and DAH films. Using this model, it was found that the activation volume required to initiate the breakthrough was roughly 0.4 nm3 for SDS and 0.3 nm3 for DAH, roughly the volume of a single molecule. Normalized breakthrough force data for SDS films with added MgCl2 showed an unexpected dip at low added salt concentrations. The model was adapted to account for changing activation volumes, and a curve of activation volume versus magnesium concentration was obtained, showing a minimum volume of 0.21 nm3. The addition of 0.2 mM SDS to a 10 mM DAH solution was found to double the measured breakthrough force of the film. Images taken of the surface showed a phase change from cylindrical hemimicelles to a planar film that may have produced the observed differences. The pH of the bulk solution was varied for both 10 mM SDS and DAH films and was found to have little effect on the breakthrough force.

6.
Langmuir ; 32(18): 4688-97, 2016 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-27096947

RESUMEN

In an effort to develop a general thermodynamic model from first-principles to describe the mixing behavior of lipid membranes, we examined lipid mixing induced by targeted binding of small (Green Fluorescent Protein (GFP)) and large (nanolipoprotein particles (NLPs)) structures to specific phases of phase-separated lipid bilayers. Phases were targeted by incorporation of phase-partitioning iminodiacetic acid (IDA)-functionalized lipids into ternary lipid mixtures consisting of DPPC, DOPC, and cholesterol. GFP and NLPs, containing histidine tags, bound the IDA portion of these lipids via a metal, Cu(2+), chelating mechanism. In giant unilamellar vesicles (GUVs), GFP and NLPs bound to the Lo domains of bilayers containing DPIDA, and bound to the Ld region of bilayers containing DOIDA. At sufficiently large concentrations of DPIDA or DOIDA, lipid mixing was induced by bound GFP and NLPs. The validity of the thermodynamic model was confirmed when it was found that the statistical mixing distribution as a function of crowding energy for smaller GFP and larger NLPs collapsed to the same trend line for each GUV composition. Moreover, results of this analysis show that the free energy of mixing for a ternary lipid bilayer consisting of DOPC, DPPC, and cholesterol varied from 7.9 × 10(-22) to 1.5 × 10(-20) J/lipid at the compositions observed, decreasing as the relative cholesterol concentration was increased. It was discovered that there appears to be a maximum packing density, and associated maximum crowding pressure, of the NLPs, suggestive of circular packing. A similarity in mixing induced by NLP1 and NLP3 despite large difference in projected areas was analytically consistent with monovalent (one histidine tag) versus divalent (two histidine tags) surface interactions, respectively. In addition to GUVs, binding and induced mixing behavior of NLPs was also observed on planar, supported lipid multibilayers. The mixing process was reversible, with Lo domains reappearing after addition of EDTA for NLP removal.


Asunto(s)
Membrana Dobles de Lípidos/química , Presión , Termodinámica
7.
Langmuir ; 30(32): 9780-8, 2014 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-25062385

RESUMEN

The entrapment of nanolipoprotein particles (NLPs) and liposomes in transparent, nanoporous silica gel derived from the precursor tetramethylorthosilicate was investigated. NLPs are discoidal patches of lipid bilayer that are belted by amphiphilic scaffold proteins and have an average thickness of 5 nm. The NLPs in this work had a diameter of roughly 15 nm and utilized membrane scaffold protein (MSP), a genetically altered variant of apolipoprotein A-I. Liposomes have previously been examined inside of silica sol-gels and have been shown to exhibit instability. This is attributed to their size (∼150 nm) and altered structure and constrained lipid dynamics upon entrapment within the nanometer-scale pores (5-50 nm) of the silica gel. By contrast, the dimensional match of NLPs with the intrinsic pore sizes of silica gel opens the possibility for their entrapment without disruption. Here we demonstrate that NLPs are more compatible with the nanometer-scale size of the porous environment by analysis of lipid phase behavior via fluorescence anisotropy and analysis of scaffold protein secondary structure via circular dichroism spectroscopy. Our results showed that the lipid phase behavior of NLPs entrapped inside of silica gel display closer resemblance to its solution behavior, more so than liposomes, and that the MSP in the NLPs maintain the high degree of α-helix secondary structure associated with functional protein-lipid interactions after entrapment. We also examined the effects of residual methanol on lipid phase behavior and the size of NLPs and found that it exerts different influences in solution and in silica gel; unlike in free solution, silica entrapment may be inhibiting NLP size increase and/or aggregation. These findings set precedence for a bioinorganic hybrid nanomaterial that could incorporate functional integral membrane proteins.


Asunto(s)
Nanopartículas/química , Gel de Sílice/química , Apolipoproteína A-I/química , Nanoestructuras/química , Polimetil Metacrilato/química
8.
Appl Environ Microbiol ; 79(1): 91-104, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23064336

RESUMEN

Optimizing ethanol yield during fermentation is important for efficient production of fuel alcohol, as well as wine and other alcoholic beverages. However, increasing ethanol concentrations during fermentation can create problems that result in arrested or sluggish sugar-to-ethanol conversion. The fundamental cellular basis for these problem fermentations, however, is not well understood. Small-scale fermentations were performed in a synthetic grape must using 22 industrial Saccharomyces cerevisiae strains (primarily wine strains) with various degrees of ethanol tolerance to assess the correlation between lipid composition and fermentation kinetic parameters. Lipids were extracted at several fermentation time points representing different growth phases of the yeast to quantitatively analyze phospholipids and ergosterol utilizing atmospheric pressure ionization-mass spectrometry methods. Lipid profiling of individual fermentations indicated that yeast lipid class profiles do not shift dramatically in composition over the course of fermentation. Multivariate statistical analysis of the data was performed using partial least-squares linear regression modeling to correlate lipid composition data with fermentation kinetic data. The results indicate a strong correlation (R(2) = 0.91) between the overall lipid composition and the final ethanol concentration (wt/wt), an indicator of strain ethanol tolerance. One potential component of ethanol tolerance, the maximum yeast cell concentration, was also found to be a strong function of lipid composition (R(2) = 0.97). Specifically, strains unable to complete fermentation were associated with high phosphatidylinositol levels early in fermentation. Yeast strains that achieved the highest cell densities and ethanol concentrations were positively correlated with phosphatidylcholine species similar to those known to decrease the perturbing effects of ethanol in model membrane systems.


Asunto(s)
Membrana Celular/química , Etanol/metabolismo , Lípidos/análisis , Saccharomyces cerevisiae/crecimiento & desarrollo , Saccharomyces cerevisiae/metabolismo , Fermentación , Espectrometría de Masas , Saccharomyces cerevisiae/química
9.
Appl Environ Microbiol ; 79(17): 5345-56, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23811519

RESUMEN

During alcoholic fermentation, Saccharomyces cerevisiae is exposed to a host of environmental and physiological stresses. Extremes of fermentation temperature have previously been demonstrated to induce fermentation arrest under growth conditions that would otherwise result in complete sugar utilization at "normal" temperatures and nutrient levels. Fermentations were carried out at 15°C, 25°C, and 35°C in a defined high-sugar medium using three Saccharomyces cerevisiae strains with diverse fermentation characteristics. The lipid composition of these strains was analyzed at two fermentation stages, when ethanol levels were low early in stationary phase and in late stationary phase at high ethanol concentrations. Several lipids exhibited dramatic differences in membrane concentration in a temperature-dependent manner. Principal component analysis (PCA) was used as a tool to elucidate correlations between specific lipid species and fermentation temperature for each yeast strain. Fermentations carried out at 35°C exhibited very high concentrations of several phosphatidylinositol species, whereas at 15°C these yeast strains exhibited higher levels of phosphatidylethanolamine and phosphatidylcholine species with medium-chain fatty acids. Furthermore, membrane concentrations of ergosterol were highest in the yeast strain that experienced stuck fermentations at all three temperatures. Fluorescence anisotropy measurements of yeast cell membrane fluidity during fermentation were carried out using the lipophilic fluorophore diphenylhexatriene. These measurements demonstrate that the changes in the lipid composition of these yeast strains across the range of fermentation temperatures used in this study did not significantly affect cell membrane fluidity. However, the results from this study indicate that fermenting S. cerevisiae modulates its membrane lipid composition in a temperature-dependent manner.


Asunto(s)
Membrana Celular/química , Fosfatidiletanolaminas/análisis , Fosfatidilinositoles/análisis , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/efectos de la radiación , Membrana Celular/fisiología , Medios de Cultivo/química , Ergosterol/análisis , Etanol/metabolismo , Fermentación , Fluidez de la Membrana , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/fisiología , Temperatura
10.
Langmuir ; 29(20): 6109-15, 2013 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-23642033

RESUMEN

This work describes a technique for forming high-density arrays and patterns of membrane-bound proteins through binding to a curvature-organized compositional pattern of metal-chelating lipids (Cu(2+)-DOIDA or Cu(2+)-DSIDA). In this bottom-up approach, the underlying support is an e-beam formed, square lattice pattern of hemispheres. This curvature pattern sorts Cu(2+)-DOIDA to the 200 nm hemispherical lattice sites of a 600 nm × 600 nm unit cell in Ld - Lo phase separated lipid multibilayers. Binding of histidine-tagged green fluorescent protein (His-GFP) creates a high density array of His-GFP-bound pixels localized to the square lattice sites. In comparison, the negative pixel pattern is created by sorting Cu(2+)-DSIDA in Ld - Lß' phase separated lipid multibilayers to the flat grid between the lattice sites followed by binding to His-GFP. Lattice defects in the His-GFP pattern lead to interesting features such as pattern circularity. We also observe defect-free arrays of His-GFP that demonstrate perfect arrays can be formed by this method suggesting the possibility of using this approach for the localization of various active molecules to form protein, DNA, or optically active molecular arrays.


Asunto(s)
Proteínas Fluorescentes Verdes/química , Lípidos/química , Proteínas de la Membrana/química , Cobre/química , Histidina/química , Estructura Molecular , Tamaño de la Partícula , Propiedades de Superficie
11.
Soft Matter ; 9(6): 2037-2046, 2013 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-23483871

RESUMEN

We study the dynamic evolution of pixilation patterns of the liquid-ordered (Lo) phase in coexistence with the liquid-disordered phase in lipid multibilayers. The pixilation patterns were formed by imposing lattice patterns of localized high curvature on phase-separating multibilayers using curvature-patterned regions of an underlying support. The projected radius of underlying hemisphere-like features, that provided the local curvature, was varied from 60 nm to 100 nm and the square lattice spacing between the features was varied between 200 nm and 400 nm using standard electron (e) -beam lithography. Over time, the area fraction of the Lo phase on the patterned regions of the substrate decreased toward zero at room temperature. This apparent metastability of the pattern derives from the high line energy of a pixelation pattern where a Boltzmann distribution shows near zero equilibrium partitioning of the Lo phase in the patterned regions. Kinetic rate analysis identifies two pattern-dependent mechanisms that dominate the transition to zero Lo area fraction; diffusion limited dissolution of the Lo phase driven by an Ostwald ripening-type process or the cooperative formation of vesicles containing Lo phase lipids. Interestingly, we observed the spontaneous formation of tubules in the corners of the array due to the high local curvature applied to the membrane. Furthermore we show that it is possible to regenerate pixilation patterns on the curvature-patterned regions by cooling below room temperature. Regenerated area fractions are in agreement with a room-temperature composition of primarily Ld phase and the high degree of overlap with the original patterns is suggestive of fixed nucleation sites.

12.
Analyst ; 138(13): 3719-27, 2013 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-23687647

RESUMEN

Nanometer-scale curvature patterns of an underlying substrate are imposed on lipid multibilayers with each pattern imparting distinctly different sorting dynamics to a metastable pixelation pattern of coexisting liquid ordered (Lo)-liquid disordered (Ld) lipid phases. Therefore, this work provides pathways toward mechanical energy-based separations for analysis of biomembrane-associate species. The central design concept of the patterned sections of the silica substrate is a square lattice pattern of 100 nm projected radius poly(methyl methacrylate) (PMMA) hemispherical features formed by electron beam lithography which pixelates the coexisting phases in order to balance membrane bending and line energy. In one variation, we surround this pattern with three PMMA walls/fences 100 nm in height which substantially slows the loss of the high line energy pixelated Lo phase by altering the balance of two competing mechanism (Ostwald ripening vs. vesiculation). In another walled variation, we form a gradient of the spacing of the 100 nm features which forces partitioning of the Lo phase toward the end of the gradient with the most open (400 nm spacing) lattice pattern where a single vesicle could grow from the Lo phase. We show that two other variations distinctly impact the dynamics, demonstrating locally slowed loss of the high line energy pixelated Lo phase and spontaneous switching of the pixel location on the unit cell, respectively. Moreover, we show that the pixelation patterns can be regenerated and sharpened by a heating and cooling cycle. We argue that localized variations in the underlying curvature pattern have rather complex consequences because of the coupling and/or competition of dynamic processes to optimize mechanical energy such as lipid diffusion, vesiculation and growth, and phase/compositional partitioning.


Asunto(s)
Membrana Dobles de Lípidos/química , Nanotecnología/métodos , Fenómenos Biomecánicos , Membrana Celular/química , Calor , Polimetil Metacrilato/química , Dióxido de Silicio/química
13.
Biophys J ; 102(3): 507-16, 2012 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-22325273

RESUMEN

We present a combined atomic force microscopy and fluorescence microscopy study of the behavior of a ternary supported lipid bilayer system containing a saturated lipid (DPPC), an unsaturated lipid (DOPC), and ergosterol in the presence of high ethanol (20 vol %). We find that the fluorescent probe Texas Red DHPE preferentially partitions into the ethanol-induced interdigitated phase, which allows the use of fluorescence imaging to investigate the phase behavior of the system. Atomic force microscopy and fluorescence images of samples with the same lipid mixture show good agreement in sample morphology and area fractions of the observed phases. Using area fractions obtained from fluorescence images over a broad range of compositions, we constructed a phase diagram of the DPPC/DOPC/ergosterol system at 20 vol % ethanol. The phase diagram clearly shows that increasing unsaturated lipid and/or ergosterol protects the membrane by preventing the formation of the interdigitated phase. This result supports the hypothesis that yeast cells increase ergosterol and unsaturated lipid content to prevent interdigitation and maintain an optimal membrane thickness as ethanol concentration increases during anaerobic fermentations. Changes in plasma membrane composition provide an important survival factor for yeast cells to deter ethanol toxicity.


Asunto(s)
Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Ergosterol/metabolismo , Etanol/farmacología , Fosfatidilcolinas/metabolismo , Saccharomyces cerevisiae/citología , 1,2-Dipalmitoilfosfatidilcolina/metabolismo , Membrana Celular/química , Membrana Dobles de Lípidos/química , Membrana Dobles de Lípidos/metabolismo , Microscopía de Fuerza Atómica , Microscopía Fluorescente , Saccharomyces cerevisiae/efectos de los fármacos
14.
Langmuir ; 28(18): 7107-13, 2012 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-22530589

RESUMEN

This work describes a technique for forming nanometer-scale pixilated lipid domains that are self-organized into geometric patterns residing on a square lattice. In this process, a lipid multibilayer stack is deposited onto a silica substrate patterned with a square lattice array of bumps, hemispherical on their sides, formed by electron beam lithography. Domain patterns are shown to be confined to the flat grid between the bumps and composed of connected and individual domain pixels. Analysis of lattices of varying sizes shows that domain pattern formation is driven by mechanical energy minimization and packing constraints. We demonstrate single lattice sizes and a gradient in lattice size varying from the micrometer to the 100 nm scale applicable to precise arraying, patterning, and transport of biomolecules that partition to lipid domains.


Asunto(s)
Electrones , Lípidos/química , Polimetil Metacrilato/química , Membrana Dobles de Lípidos/química , Nanoestructuras/química , Tamaño de la Partícula , Dióxido de Silicio/química , Propiedades de Superficie
15.
Biochim Biophys Acta Biomembr ; 1864(5): 183887, 2022 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-35150645

RESUMEN

Phase separation phenomena in hybrid lipid/block copolymer/cholesterol bilayers combining polybutadiene-block-polyethylene oxide (PBdPEO), egg sphingomyelin (egg SM), and cholesterol were studied with fluorescence spectroscopy and microscopy for comparison to lipid bilayers composed of palmitoyl oleoyl phosphatidylcholine (POPC), egg SM, and cholesterol. Laurdan emission spectra were decomposed into three lognormal curves. The temperature dependence of the ratios of the areas of the middle and lowest energy peaks revealed temperature break-point (Tbreak) values that were in better agreement, compared to generalized polarization inflection temperatures, with phase transition temperatures in giant unilamellar vesicles (GUVs). Agreement between GUV and spectroscopy results was further improved for hybrid vesicles by using the ratio of the area of the middle peak to the sum of the areas all three peaks to find the Tbreak values. For the hybrid vesicles, trends at Tbreak are hypothesized to be correlated with the mechanisms by which the phase transition takes place, supported by the compositional range as well as the morphologies of domains observed in GUVs. Low miscibility of PBdPEO and egg SM is suggested by the finding of relatively high Tbreak values at cholesterol contents greater than 30 mol%. Further, GUV phase behavior suggests stronger partitioning of cholesterol into PBdPEO than into POPC, and less miscibility of PBdPEO than POPC with egg SM. These results, summarized using a heat-map, contribute to the limited body of knowledge regarding the effect of cholesterol on hybrid membranes, with potential application toward the development of such materials for drug delivery or membrane protein reconstitution.


Asunto(s)
Colesterol/química , Fosfatidilcolinas/química , Polímeros/química , Esfingomielinas/química , Liposomas Unilamelares/química , Microscopía Fluorescente , Transición de Fase , Espectrometría de Fluorescencia , Temperatura de Transición
16.
Biochim Biophys Acta Biomembr ; 1864(11): 184026, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-35952852

RESUMEN

The impacts of pH, salt concentration (expressed as Debye length), and composition on the phase behavior of hybrid block copolymer-lipid-cholesterol bilayers incorporating carboxyl-terminated poly(butadiene)-block-poly(ethylene oxide) copolymer (PBdPEO1800(-)) or/and non-carboxyl-terminated PBdPEO (PBdPEO1800 or/and PBdPEO950), egg sphingomyelin (egg SM), and cholesterol were examined using fluorescence spectroscopy of laurdan. Laurdan emission spectra were decomposed into three lognormal curves as functions of energy. The ratio of the area of the mid-energy peak to the sum of the areas of all three peaks was evaluated as vesicles were cooled, yielding temperature breakpoint values (Tbreak) expected to be within the range of the phase transition temperature. Tbreak values displayed dependence on pH, Debye length, and vesicle composition consistent with an electrostatic repulsion contribution to vesicle phase behavior. Increased pH and Debye length, for which a greater dissociated fraction of PBdPEO1800(-) and a greater energy of electrostatic repulsion would be expected, resulted in Tbreak values as much as 10 °C less than at low pH or short Debye lengths. Additionally, at Debye lengths comparable to those at physiologically relevant ionic strength, Tbreak at pH 5.9 was observed to be slightly higher than at pH 7.0 for vesicles containing 50 mol% PBdPEO1800(-). Electrostatic effects observed for hybrid vesicles incorporating significant amounts of carboxyl-terminated polymer may have the ability to drive phase separation in response to pH drops-such as those observed after endocytosis-in physiologically relevant conditions, suggesting the utility of such materials for drug delivery.


Asunto(s)
Colesterol , Membrana Dobles de Lípidos , Colesterol/química , Concentración de Iones de Hidrógeno , Iones , Membrana Dobles de Lípidos/química , Transición de Fase , Polímeros/química
17.
Methods Mol Biol ; 2433: 121-134, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34985741

RESUMEN

Cell-free protein synthesis can enable the combinatorial screening of many different components and concentrations. However, manual pipetting methods are unfit to handle many cell-free reactions. Here, we describe a microfluidic method that can generate hundreds of unique submicroliter scale reactions. The method is coupled with a high yield cell-free system that can be applied for broad protein screening assays.


Asunto(s)
Técnicas Analíticas Microfluídicas , Microfluídica , Bioensayo , Sistema Libre de Células , Ensayos Analíticos de Alto Rendimiento/métodos , Microfluídica/métodos
18.
Biochim Biophys Acta ; 1798(7): 1357-67, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19945421

RESUMEN

The objective of this paper is to review phase behavior and shape characterization of cerebroside-rich domains in binary and ternary lipid bilayers, as obtained by microscopy techniques. These lipid mixtures provide a format to examine molecular (e.g. headgroup, tail unsaturation, and tail hydroxylation) and thermodynamic (e.g. temperature and mole percentages) factors that determine phase behavior, molecular partitioning, crystal/atomic scale structure, and microstructure/shape (particularly of phase-separated domains). Microscopy can provide excellent spatial (often with high resolution) characterization of cerebroside-rich domains (and their surroundings) to identify, describe or infer with high certainty these characteristics. In the introduction to this review we review briefly the molecular structure, phase behavior, and intermolecular interactions of cerebrosides, in comparison to ceramides and sphingomyelins and in some binary and biological systems. The bulk of the review is then devoted to microscopy investigations of cerebroside-rich domain microstructure and shape dynamics in binary and ternary (one component is cholesterol) systems. Quantitative and/or high-resolution microscopy techniques have been used to interrogate cerebroside-rich domains such as freeze-fracture electron microscopy, atomic force microscopy, imaging elipsometry, two-photon fluorescence microscopy, and LAURDAN generalized polarization in addition to the laboratory workhorse technique of epifluorescence microscopy that allows a quick often qualitative assessment of microstructure and dynamics. We particularly focus on the information these microscopy investigations have revealed with respect to phase behavior, cholesterol partitioning, domain shape, and determinants of domain shape.


Asunto(s)
Cerebrósidos/química , Membrana Dobles de Lípidos/química , Microdominios de Membrana/química , Microdominios de Membrana/ultraestructura , Microscopía de Fluorescencia por Excitación Multifotónica/métodos , 2-Naftilamina/análogos & derivados , 2-Naftilamina/química , Técnica de Fractura por Congelación , Lauratos/química , Microscopía Electrónica de Rastreo/métodos , Transición de Fase
19.
Biochim Biophys Acta ; 1798(4): 719-29, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19766590

RESUMEN

The objective of this paper was to review our recent investigations of silica xerogel and aerogel-supported lipid bilayers. These systems provide a format to observe relationships between substrate curvature and supported lipid bilayer formation, lipid dynamics, and lipid mixtures phase behavior and partitioning. Sensitive surface techniques such as quartz crystal microbalance and atomic force microscopy are readily applied to these systems. To inform current and future investigations, we review the experimental literature involving the impact of curvature on lipid dynamics, lipid and phase-separated lipid domain localization, and membrane-substrate conformations and we review our molecular dynamics simulations of supported lipid bilayers with the atomistic and molecular information they provide.


Asunto(s)
Geles/química , Membrana Dobles de Lípidos/química , Fluidez de la Membrana , Dióxido de Silicio/química , Microdominios de Membrana/química , Microdominios de Membrana/ultraestructura , Microscopía de Fuerza Atómica , Microscopía Electrónica de Rastreo , Modelos Moleculares , Simulación de Dinámica Molecular
20.
J Am Chem Soc ; 133(11): 3720-3, 2011 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-21366242

RESUMEN

We present a simulation study focusing on modulations of the stress, or lateral pressure, profiles of lipid bilayer phases by addition of a sterol, ergosterol, at multiple temperatures. A major redistribution of lateral and normal pressures across the gel-phase bilayer required 10 mol % sterol in comparison to a gradual redistribution beginning at 20 mol % for the liquid phase. Stress profiles across all temperatures converged at 30 mol % ergosterol. Redistribution and merging of stress profiles, associated with structural alterations, are coincident with experimentally observed modulations in mechanical properties and therefore are suggested as the mechanism of action for this biologically necessary role of sterols.


Asunto(s)
1,2-Dipalmitoilfosfatidilcolina/química , Ergosterol/química , Membrana Dobles de Lípidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA