Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Physiol ; 597(4): 1073-1085, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-29931797

RESUMEN

KEY POINTS: Sickle cell disease (SCD) results in cardiopulmonary dysfunction, which may be exacerbated by prolonged exposure to environmental hypoxia. It is currently unknown whether exposure to mild and moderate altitude exacerbates SCD associated cardiopulmonary and systemic complications. Three months of exposure to mild (1609 m) and moderate (2438 m) altitude increased rates of haemolysis and right ventricular systolic pressures in mice with SCD compared to healthy wild-type cohorts and SCD mice at sea level. The haemodynamic changes in SCD mice that had lived at mild and moderate altitude were accompanied by changes in the balance between pulmonary vascular endothelial nitric oxide synthase and endothelin receptor expression and impaired exercise tolerance. These data demonstrate that chronic altitude exposure exacerbates the complications associated with SCD and provides pertinent information for the clinical counselling of SCD patients. ABSTRACT: Exposure to high altitude worsens symptoms and crises in patients with sickle cell disease (SCD). However, it remains unclear whether prolonged exposure to low barometric pressures exacerbates SCD aetiologies or impairs quality of life. We tested the hypothesis that, relative to wild-type (WT) mice, Berkley sickle cell mice (BERK-SS) residing at sea level, mild (1609 m) and moderate (2438 m) altitude would have a higher rate of haemolysis, impaired cardiac function and reduced exercise tolerance, and that the level of altitude would worsen these decrements. Following 3 months of altitude exposure, right ventricular systolic pressure was measured (solid-state transducer). In addition, the adaptive balance between pulmonary vascular endothelial nitric oxide synthase and endothelin was assessed in lung tissue to determine differences in pulmonary vascular adaptation and the speed/duration relationship (critical speed) was used to evaluate treadmill exercise tolerance. At all altitudes, BERK-SS mice had a significantly lower percentage haemocrit and higher total bilirubin and free haemoglobin concentration (P < 0.05 for all). right ventricular systolic pressures in BERK-SS were higher than WT at moderate altitude and also compared to BERK-SS at sea level (P < 0.05, for both). Critical speed was significantly lower in BERK-SS at mild and moderate altitude (P < 0.05). BERK-SS demonstrated exacerbated SCD complications and reduced exercise capacity associated with an increase in altitude. These results suggest that exposure to mild and moderate altitude enhances the progression of SCD in BERK-SS mice compared to healthy WT cohorts and BERK-SS mice at sea level and provides crucial information for the clinical counselling of SCD patients.


Asunto(s)
Altitud , Anemia de Células Falciformes/fisiopatología , Endotelio Vascular/fisiopatología , Pulmón/irrigación sanguínea , Esfuerzo Físico , Aclimatación , Anemia de Células Falciformes/sangre , Animales , Presión Sanguínea , Endotelinas/metabolismo , Endotelio Vascular/metabolismo , Femenino , Hemólisis , Pulmón/metabolismo , Pulmón/fisiopatología , Masculino , Ratones , Ratones Endogámicos C57BL , Óxido Nítrico/metabolismo
2.
Arterioscler Thromb Vasc Biol ; 38(1): 154-163, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29191928

RESUMEN

OBJECTIVE: Pulmonary artery smooth muscle cells (PASMCs) from neprilysin (NEP) null mice exhibit a synthetic phenotype and increased activation of Rho GTPases compared with their wild-type counterparts. Although Rho GTPases are known to promote a contractile SMC phenotype, we hypothesize that their sustained activity decreases SM-protein expression in these cells. APPROACH AND RESULTS: PASMCs isolated from wild-type and NEP-/- mice were used to assess levels of SM-proteins (SM-actin, SM-myosin, SM22, and calponin) by Western blotting, and were lower in NEP-/- PASMCs compared with wild-type. Rac and Rho (ras homology family member) levels and activity were higher in NEP-/- PASMCs, and ShRNA to Rac and Rho restored SM-protein, and attenuated the enhanced migration and proliferation of NEP-/- PASMCs. SM-gene repressors, p-Elk-1, and Klf4 (Kruppel lung factor 4), were higher in NEP-/- PASMCs and decreased by shRNA to Rac and Rho. Costimulation of wild-type PASMCs with PDGF (platelet-derived growth factor) and the NEP substrate, ET-1 (endothelin-1), increased Rac and Rho activity, and decreased SM-protein levels mimicking the NEP knock-out phenotype. Activation of Rac and Rho and downstream effectors was observed in lung tissue from NEP-/- mice and humans with chronic obstructive pulmonary disease. CONCLUSIONS: Sustained Rho activation in NEP-/- PASMCs is associated with a decrease in SM-protein levels and increased migration and proliferation. Inactivation of RhoGDI (Rho guanine dissociation inhibitor) and RhoGAP (Rho GTPase activating protein) by phosphorylation may contribute to prolonged activation of Rho in NEP-/- PASMCs. Rho GTPases may thus have a role in integration of signals between vasopeptides and growth factor receptors and could influence pathways that suppress SM-proteins to promote a synthetic phenotype.


Asunto(s)
Proteínas Musculares/biosíntesis , Músculo Liso Vascular/enzimología , Miocitos del Músculo Liso/enzimología , Neprilisina/deficiencia , Proteínas de Unión al GTP rho/metabolismo , Actinas/biosíntesis , Animales , Becaplermina/farmacología , Proteínas de Unión al Calcio/biosíntesis , Movimiento Celular , Proliferación Celular , Células Cultivadas , Endotelina-1/farmacología , Activación Enzimática , Genotipo , Humanos , Factor 4 Similar a Kruppel , Factores de Transcripción de Tipo Kruppel/genética , Factores de Transcripción de Tipo Kruppel/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas de Microfilamentos/biosíntesis , Músculo Liso Vascular/efectos de los fármacos , Músculo Liso Vascular/patología , Miocitos del Músculo Liso/efectos de los fármacos , Miocitos del Músculo Liso/patología , Neprilisina/genética , Fenotipo , Arteria Pulmonar/efectos de los fármacos , Arteria Pulmonar/enzimología , Arteria Pulmonar/patología , Enfermedad Pulmonar Obstructiva Crónica/enzimología , Enfermedad Pulmonar Obstructiva Crónica/patología , Transducción de Señal , Miosinas del Músculo Liso/biosíntesis , Proteína Elk-1 con Dominio ets/genética , Proteína Elk-1 con Dominio ets/metabolismo , Proteínas de Unión al GTP rho/genética , Calponinas
3.
Am J Respir Cell Mol Biol ; 59(4): 479-489, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29851508

RESUMEN

Optimal right ventricular (RV) function in pulmonary hypertension (PH) requires structural and functional coupling between the RV cardiomyocyte and its adjacent capillary network. Prior investigations have indicated that RV vascular rarefaction occurs in PH, which could contribute to RV failure by reduced delivery of oxygen or other metabolic substrates. However, it has not been determined if rarefaction results from relative underproliferation in the setting of tissue hypertrophy or from actual loss of vessels. It is also unknown if rarefaction results in inadequate substrate delivery to the RV tissue. In the present study, PH was induced in rats by SU5416-hypoxia-normoxia exposure. The vasculature in the RV free wall was assessed using stereology. Steady-state metabolomics of the RV tissue was performed by mass spectrometry. Complementary studies were performed in hypoxia-exposed mice and rats. Rats with severe PH had evidence of RV failure by decreased cardiac output and systemic hypotension. By stereology, there was significant RV hypertrophy and increased total vascular length in the RV free wall in close proportion, with evidence of vessel proliferation but no evidence of endothelial cell apoptosis. There was a modest increase in the radius of tissue served per vessel, with decreased arterial delivery of metabolic substrates. Metabolomics revealed major metabolic alterations and metabolic reprogramming; however, metabolic substrate delivery was functionally preserved, without evidence of either tissue hypoxia or depletion of key metabolic substrates. Hypoxia-treated rats and mice had similar but milder alterations. There is significant homeostatic vascular adaptation in the right ventricle of rodents with PH.


Asunto(s)
Adaptación Fisiológica , Ventrículos Cardíacos/fisiopatología , Hipertensión Pulmonar/fisiopatología , Animales , Apoptosis , Proliferación Celular , Células Endoteliales/metabolismo , Femenino , Ventrículos Cardíacos/metabolismo , Ventrículos Cardíacos/patología , Hipertensión Pulmonar/patología , Hipoxia/patología , Hipoxia/fisiopatología , Indoles , Ratones Endogámicos C57BL , Pirroles , Ratas Sprague-Dawley
4.
Transgenic Res ; 25(6): 773-784, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27369050

RESUMEN

Neprilysin (NEP) is a cell surface metallopeptidase found in many tissues. Based mostly on pharmacological manipulations, NEP has been thought to protect blood vessels from plasma extravasation. We have suggested that NEP may protect against pulmonary vascular injury. However, these prior studies did not utilize mice which overexpress NEP. The aims of the present investigation were to develop and characterize doubly transgenic (DT) mice that overexpress NEP universally and conditionally, and to investigate the protective effect that overexpressed NEP may have against plasma extravasation in the vasculature. The duodenum, which is often used to assess vascular permeability, and in which the NEP protein was overexpressed in our DT mice two-fold, was selected as our experimental preparation. We found that substance P-induced plasma extravasation was decreased substantially (3.5-fold) in the duodenums of our doxycycline-treated DT mice, giving independent evidence of NEP's protective effects against plasma extravasation. Transgenic lung NEP protein was not stably expressed in the DT mice, so we were not able to test the effect of NEP overexpression in the lung. Although initially overexpressed nearly nine-fold at that site, pulmonary NEP protein overexpression eventually dissipated. Surprisingly, at a time when there was no lung transgenic NEP protein overexpression, lung NEP mRNA expression was still increased 23-fold, indicating that the expression defect probably is not transcriptional. These studies help to characterize our complex transgenic model of NEP overexpression and further demonstrate NEP's protective effects against plasma extravasation.


Asunto(s)
Vasos Sanguíneos/metabolismo , Pulmón/metabolismo , Neprilisina/genética , Animales , Vasos Sanguíneos/lesiones , Vasos Sanguíneos/patología , Doxiciclina/administración & dosificación , Duodeno/irrigación sanguínea , Duodeno/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Pulmón/irrigación sanguínea , Pulmón/patología , Ratones , Ratones Transgénicos/genética , Ratones Transgénicos/metabolismo , Neprilisina/biosíntesis , Sustancia P/metabolismo
5.
Circulation ; 129(17): 1770-80, 2014 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-24503951

RESUMEN

BACKGROUND: Chloride intracellular channel 4 (CLIC4) is highly expressed in the endothelium of remodeled pulmonary vessels and plexiform lesions of patients with pulmonary arterial hypertension. CLIC4 regulates vasculogenesis through endothelial tube formation. Aberrant CLIC4 expression may contribute to the vascular pathology of pulmonary arterial hypertension. METHODS AND RESULTS: CLIC4 protein expression was increased in plasma and blood-derived endothelial cells from patients with idiopathic pulmonary arterial hypertension and in the pulmonary vascular endothelium of 3 rat models of pulmonary hypertension. CLIC4 gene deletion markedly attenuated the development of chronic hypoxia-induced pulmonary hypertension in mice. Adenoviral overexpression of CLIC4 in cultured human pulmonary artery endothelial cells compromised pulmonary endothelial barrier function and enhanced their survival and angiogenic capacity, whereas CLIC4 shRNA had an inhibitory effect. Similarly, inhibition of CLIC4 expression in blood-derived endothelial cells from patients with idiopathic pulmonary arterial hypertension attenuated the abnormal angiogenic behavior that characterizes these cells. The mechanism of CLIC4 effects involves p65-mediated activation of nuclear factor-κB, followed by stabilization of hypoxia-inducible factor-1α and increased downstream production of vascular endothelial growth factor and endothelin-1. CONCLUSION: Increased CLIC4 expression is an early manifestation and mediator of endothelial dysfunction in pulmonary hypertension.


Asunto(s)
Canales de Cloruro/fisiología , Endotelio Vascular/fisiopatología , Hipertensión Pulmonar/fisiopatología , Proteínas Mitocondriales/fisiología , Arteria Pulmonar/fisiopatología , Animales , Células Cultivadas , Canales de Cloruro/genética , Endotelio Vascular/citología , Hipertensión Pulmonar Primaria Familiar , Humanos , Hipertensión Pulmonar/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/fisiología , Masculino , Ratones , Ratones Endogámicos , Ratones Noqueados , Proteínas Mitocondriales/genética , Músculo Liso Vascular/citología , Músculo Liso Vascular/fisiopatología , Arteria Pulmonar/citología , Ratas , Ratas Sprague-Dawley , Factor de Transcripción ReIA/fisiología
6.
Aviat Space Environ Med ; 85(11): 1125-9, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25329946

RESUMEN

BACKGROUND: High altitude illnesses (HAI) are a risk factor for any individual who is exposed to a significant increase in altitude. To learn more about the epidemiology of HAI, we sought to determine if health records from a commercial trekking company could provide novel data on the prevalence of HAI, as well as efficacy data regarding common HAI therapeutics. METHODS: Health parameters from 917 tourists ascending Mt. Kilimanjaro over a 10-yr period were analyzed for meaningful data. RESULTS: Of all subjects, 70% experienced at least one instance of a symptom related to HAI (headache, nausea, vomiting, diarrhea, or loss of appetite) during the trek. Acetazolamide was used at least once by 90% of subjects and, of those who used acetazolamide, 92% began taking it on day 1 of the ascent. Acetazolamide was found to improve oxygen saturation 1.2% above 9842.5 ft (3000 m). Dexamethasone use 12 h prior to ascending above 18,996 ft (5790 m) decreased the probability of a subject exhibiting at least one AMS symptom at that altitude. DISCUSSION: The prevalence of AMS symptoms was not reduced by taking 2 extra days to reach the summit of Mt. Kilimanjaro. Prophylactic acetazolamide modestly improved oxygen saturation; however, it did not reduce symptoms. Therapeutic dexamethasone, especially at higher altitudes, was effective at reducing symptoms. We conclude that meaningful high altitude physiological data can be obtained from private trekking companies.


Asunto(s)
Mal de Altura/epidemiología , Acetazolamida/uso terapéutico , Mal de Altura/prevención & control , Antieméticos/uso terapéutico , Inhibidores de Anhidrasa Carbónica/uso terapéutico , Comercio , Recolección de Datos , Dexametasona/uso terapéutico , Femenino , Humanos , Modelos Lineales , Masculino , Montañismo/fisiología , Oxígeno/sangre , Estudios Retrospectivos , Tanzanía/epidemiología , Viaje
7.
Am J Respir Crit Care Med ; 183(3): 330-40, 2011 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-20813891

RESUMEN

RATIONALE: Studies with genetically engineered mice showed that decreased expression of the transmembrane peptidase neprilysin (NEP) increases susceptibility to hypoxic pulmonary vascular remodeling and hypertension; in hypoxic wild-type mice, expression is decreased early in distal pulmonary arteries, where prominent vascular remodeling occurs. Therefore, in humans with smoke- and hypoxia-induced vascular remodeling, as in chronic obstructive pulmonary disease (COPD), pulmonary activity/expression of NEP may likewise be decreased. OBJECTIVES: To test whether NEP activity and expression are reduced in COPD lungs and pulmonary arterial smooth muscle cells (SMCs) exposed to cigarette smoke extract or hypoxia and begin to investigate mechanisms involved. METHODS: Control and advanced COPD lung lysates (n = 13-14) were analyzed for NEP activity and protein and mRNA expression. As a control, dipeptidyl peptidase IV activity was analyzed. Lung sections were assessed for vascular remodeling and oxidant damage. Human pulmonary arterial SMCs were exposed to cigarette smoke extract, hypoxia, or H2O2, and incubated with antioxidants or lysosomal/proteasomal inhibitors. MEASUREMENTS AND MAIN RESULTS: COPD lungs demonstrated areas of vascular rarification, distal muscularization, and variable intimal and prominent medial/adventitial thickening. NEP activity was reduced by 76%; NEP protein expression was decreased in alveolar walls and distal vessels; mRNA expression was also decreased. In SMCs exposed to cigarette smoke extract, hypoxia, and H2O2, NEP activity and expression were also reduced. Reactive oxygen species inactivated NEP activity; NEP protein degradation appeared to be substantially induced. CONCLUSIONS: Mechanisms responsible for reduced NEP activity and protein expression include oxidative reactions and protein degradation. Maintaining or increasing lung NEP may protect against pulmonary vascular remodeling in response to chronic smoke and hypoxia.


Asunto(s)
Remodelación de las Vías Aéreas (Respiratorias)/fisiología , Neprilisina/fisiología , Enfermedad Pulmonar Obstructiva Crónica/patología , Adolescente , Anciano , Western Blotting , Estudios de Casos y Controles , Femenino , Humanos , Pulmón/irrigación sanguínea , Pulmón/química , Pulmón/patología , Masculino , Persona de Mediana Edad , Neprilisina/análisis , Alveolos Pulmonares/patología , Arteria Pulmonar/patología , Enfermedad Pulmonar Obstructiva Crónica/fisiopatología , Adulto Joven
8.
Dev Biol ; 313(1): 58-66, 2008 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-18022152

RESUMEN

Nkx2.2 is a homeodomain-containing transcription factor essential for pancreatic islet cell specification. In this study we investigate the role of Nkx2.2 within the small intestine. We have determined that Nkx2.2 is expressed at the onset of intestinal epithelial cell differentiation in specific intestinal cell populations, including a subset of enteroendocrine cells. Similar to its role in the pancreatic islet, Nkx2.2 regulates cell fate choices within the intestinal enteroendocrine population; in the Nkx2.2 null mice, several hormone-producing enteroendocrine cell populations are absent or reduced and the ghrelin-producing cell population is upregulated. The remaining intestinal cell populations, including the paneth cells, goblet cells, and enterocytes appear to be unaffected by the loss of Nkx2.2. Furthermore, similar to the pancreatic islet, Nkx2.2 appears to function upstream of Pax6 in regulating intestinal cell fates; Pax6 mRNA and protein expression is decreased in the Nkx2.2 null mice. These studies identify a novel role for Nkx2.2 in intestinal endocrine cell development and reveal the regulatory similarities between cell type specification in the pancreatic islet and in the enteroendocrine population of the intestine.


Asunto(s)
Linaje de la Célula , Glándulas Endocrinas/citología , Proteínas de Homeodominio/fisiología , Intestino Delgado/citología , Intestino Delgado/fisiología , Factores de Transcripción/fisiología , Animales , Diferenciación Celular , Glándulas Endocrinas/fisiología , Regulación del Desarrollo de la Expresión Génica , Proteína Homeobox Nkx-2.2 , Ratones , Proteínas de Pez Cebra
9.
Drug Deliv ; 26(1): 147-157, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30822171

RESUMEN

Hypoxic pulmonary vasoconstriction (HPV) is a well-characterized vascular response to low oxygen pressures and is involved in life-threatening conditions such as high-altitude pulmonary edema (HAPE) and pulmonary arterial hypertension (PAH). While the efficacy of oral therapies can be affected by drug metabolism, or dose-limiting systemic toxicity, inhaled treatment via pressured metered dose inhalers (pMDI) may be an effective, nontoxic, practical alternative. We hypothesized that a stable water-in-perfluorooctyl bromide (PFOB) emulsion that provides solubility in common pMDI propellants, engineered for intrapulmonary delivery of pulmonary vasodilators, reverses HPV during acute hypoxia (HX). Male Sprague Dawley rats received two 10-min bouts of HX (13% O2) with 20 min of room air and drug application between exposures. Treatment groups: intrapulmonary delivery (PUL) of (1) saline; (2) ambrisentan in saline (0.1 mg/kg); (3) empty emulsion; (4) emulsion encapsulating ambrisentan or sodium nitrite (NaNO2) (0.1 and 0.5 mg/kg each); and intravenous (5) ambrisentan (0.1 mg/kg) or (6) NaNO2 (0.5 mg/kg). Neither PUL of saline or empty emulsion, nor infusions of drugs prevented pulmonary artery pressure (PAP) elevation (32.6 ± 3.2, 31.5 ± 1.2, 29.3 ± 1.8, and 30.2 ± 2.5 mmHg, respectively). In contrast, PUL of aqueous ambrisentan and both drug emulsions reduced PAP by 20-30% during HX, compared to controls. IL6 expression in bronchoalveolar lavage fluid and whole lung 24 h post-PUL did not differ among cohorts. We demonstrate proof-of-concept for delivering pulmonary vasodilators via aerosolized water-in-PFOB emulsion. This concept opens a potentially feasible and effective route of treating pulmonary vascular pathologies via pMDI.


Asunto(s)
Sistemas de Liberación de Medicamentos/métodos , Emulsiones/administración & dosificación , Fluorocarburos/administración & dosificación , Hipertensión Pulmonar/tratamiento farmacológico , Edema Pulmonar/tratamiento farmacológico , Agua/administración & dosificación , Animales , Antihipertensivos/administración & dosificación , Antihipertensivos/metabolismo , Evaluación Preclínica de Medicamentos/métodos , Emulsiones/metabolismo , Fluorocarburos/metabolismo , Hipertensión Pulmonar/diagnóstico por imagen , Hipertensión Pulmonar/metabolismo , Masculino , Fenilpropionatos/administración & dosificación , Fenilpropionatos/metabolismo , Circulación Pulmonar/efectos de los fármacos , Circulación Pulmonar/fisiología , Edema Pulmonar/diagnóstico por imagen , Edema Pulmonar/metabolismo , Piridazinas/administración & dosificación , Piridazinas/metabolismo , Ratas , Ratas Sprague-Dawley , Resultado del Tratamiento , Agua/metabolismo
10.
Dev Biol ; 312(2): 523-32, 2007 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-17988662

RESUMEN

Nkx2.2 and NeuroD1 are vital for proper differentiation of pancreatic islet cell types. Nkx2.2-null mice fail to form beta cells, have reduced numbers of alpha and PP cells and display an increase in ghrelin-producing epsilon cells. NeuroD1-null mice display a reduction of alpha and beta cells after embryonic day (e) 17.5. To begin to determine the relative contributions of Nkx2.2 and NeuroD1 in islet development, we generated Nkx2.2-/-;NeuroD1-/- double knockout (DKO) mice. As expected, the DKO mice fail to form beta cells, similar to the Nkx2.2-null mice, suggesting that the Nkx2.2 phenotype may be dominant over the NeuroD1 phenotype in the beta cells. Surprisingly, however, the alpha, PP and epsilon phenotypes of the Nkx2.2-null mice are partially rescued by the simultaneous elimination of NeuroD1, even at early developmental time points when NeuroD1 null mice alone do not display a phenotype. Our results indicate that Nkx2.2 and NeuroD1 interact to regulate pancreatic islet cell fates, and this epistatic relationship is cell-type dependent. Furthermore, this study reveals a previously unappreciated early function of NeuroD1 in regulating the specification of alpha, PP and epsilon cells.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/fisiología , Células Secretoras de Glucagón/metabolismo , Islotes Pancreáticos/metabolismo , Células Secretoras de Polipéptido Pancreático/metabolismo , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Diferenciación Celular/genética , Embrión de Mamíferos/metabolismo , Regulación del Desarrollo de la Expresión Génica , Ghrelina/biosíntesis , Glucagón/biosíntesis , Proteína Homeobox Nkx-2.2 , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Ratones , Ratones Noqueados , Ratones Transgénicos , Proteínas del Tejido Nervioso/metabolismo , Factores del Dominio POU/metabolismo , Fenotipo , ARN Mensajero/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas de Pez Cebra
11.
J Vis Exp ; (139)2018 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-30272649

RESUMEN

Vascular leak, or plasma extravasation, has a number of causes, and may be a serious consequence or symptom of an inflammatory response. This study may ultimately lead to new knowledge concerning the causes of or new ways to inhibit or treat plasma extravasation. It is important that researchers have the proper tools, including the best methods available, for studying plasma extravasation. In this article, we describe a protocol, using the Evans blue dye method, for assessing plasma extravasation in the organs of FVBN mice. This protocol is intentionally simple, to as great a degree as possible, but provides high quality data. Evans blue dye has been chosen primarily because it is easy for the average laboratory to use. We have used this protocol to provide evidence and support for the hypothesis that the enzyme neprilysin may protect the vasculature against plasma extravasation. However, this protocol may be experimentally used and easily adapted for use in other strains of mice or in other species, in many different organs or tissues, for studies which may involve other factors that are important in understanding, preventing, or treating plasma extravasation. This protocol has been extensively optimized and modified from existing protocols, and combines reliability, ease of use, economy, and general availability of materials and equipment, making this protocol superior for the average laboratory to use in quantifying plasma extravasation from organs.


Asunto(s)
Permeabilidad Capilar/efectos de los fármacos , Azul de Evans/química , Animales , Masculino , Ratones
12.
PLoS One ; 12(2): e0171219, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28152051

RESUMEN

It is now well established that both inherited and acquired forms of hemolytic disease can promote pulmonary vascular disease consequent of free hemoglobin (Hb) induced NO scavenging, elevations in reactive oxygen species and lipid peroxidation. It has recently been reported that oxidative stress can activate NFkB through a toll-like receptor 9 (TLR9) mediated pathway; further, TLR9 can be activated by either nuclear or mitochondrial DNA liberated by stress induced cellular trauma. We hypothesis that Hb induced lipid peroxidation and subsequent endothelial cell trauma is linked to TLR9 activation, resulting in IL-6 mediated pulmonary smooth muscle cell proliferation. We examined the effects of Hb on rat pulmonary artery endothelial and smooth muscle cells (rPAEC and rPASMC, respectively), and then utilized TLR9 and IL6 inhibitors, as well as the Hb and heme binding proteins (haptoglobin (Hp) and hemopexin (Hpx), respectively) to further elucidate the aforementioned mediators. Further, we explored the effects of Hb in vivo utilizing endothelial cell (EC) specific myeloid differentiation primary response gene-88 (MyD88) and TLR9 null mice. Our data show that oxidized Hb induces lipid peroxidation, cellular toxicity (5.5 ± 1.7 fold; p≤0.04), increased TLR9 activation (60%; p = 0.01), and up regulated IL6 expression (1.75±0.3 fold; p = 0.04) in rPAEC. Rat PASMC exhibited a more proliferative state (13 ± 1%; p = 0.01) when co-cultured with Hb activated rPAEC. These effects were attenuated with the sequestration of Hb or heme by Hp and Hpx as well as with TLR9 an IL-6 inhibition. Moreover, in both EC-MyD88 and TLR9 null mice Hb-infusion resulted in less lung IL-6 expression compared to WT cohorts. These results demonstrate that Hb-induced lipid peroxidation can initiate a modest TLR9 mediated inflammatory response, subsequently generating an activated SMC phenotype.


Asunto(s)
Hemoglobinas/metabolismo , Arteria Pulmonar/fisiología , Receptor Toll-Like 9/fisiología , Anemia Hemolítica/etiología , Animales , Proliferación Celular , Femenino , Hipertensión Pulmonar/etiología , Interleucina-6/fisiología , Peroxidación de Lípido , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Músculo Liso Vascular
14.
Aerosp Med Hum Perform ; 87(12): 1031-1035, 2016 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-28323589

RESUMEN

BACKGROUND: High altitude cerebral edema (HACE) is a fulminant, deadly, and yet still unpredictable brain disease. A new prophylactic treatment for HACE and its predecessor, acute mountain sickness (AMS), needs to be developed without the contraindications or adverse effect profiles of acetazolamide and dexamethasone. Since neovascularization signals are likely key contributors to HACE/AMS, our approach was to examine already existing anti-angiogenic drugs to inhibit potential initiating HACE pathway(s). This approach can also reveal crucial early steps in the frequently debated mechanism of HACE/AMS pathogenesis. METHODS: We exposed four rat cohorts to hypobaric hypoxia and one to sea level (hyperbaric) conditions. The cohorts were treated with saline controls, an anti-angiogenesis drug (motesanib), a pro-angiogenesis drug (deferoxamine), or an intraperitoneal version of the established AMS prophylaxis drug, acetazolamide (benzolamide). Brain tissue was analyzed for cerebrovascular leak using the Evans Blue Dye (EVBD) protocol. RESULTS: We observed significantly increased EVBD in the altitude control and pro-angiogenesis (deferoxamine) cohorts, and significantly decreased EVBD in the anti-angiogenesis (motesanib), established treatment (benzolamide), and sea-level cohorts. DISCUSSION: Anti-angiogenesis-treated cohorts demonstrated less cerebrovascular extravasation than the altitude control and pro-angiogenesis treated rats, suggesting promise as an alternative prophylactic HACE/AMS treatment. The leak exacerbation with pro-angiogenesis treatment and improvement with anti-angiogenesis treatment support the hypothesis of early neovascularization signals provoking HACE. We demonstrate statistically significant evidence to guide further investigation for VEGF- and HIF-inhibitors as HACE/AMS prophylaxis, and as elucidators of still unknown HACE pathogenesis.Tarshis S, Maltzahn J, Loomis Z, Irwin DC. Preventing high altitude cerebral edema in rats with repurposed anti-angiogenesis pharmacotherapy. Aerosp Med Hum Perform. 2016; 87(12):1031-1035.


Asunto(s)
Mal de Altura/prevención & control , Inductores de la Angiogénesis/farmacología , Inhibidores de la Angiogénesis/farmacología , Edema Encefálico/prevención & control , Permeabilidad Capilar/efectos de los fármacos , Inhibidores de Anhidrasa Carbónica/farmacología , Arterias Cerebrales/efectos de los fármacos , Venas Cerebrales/efectos de los fármacos , Acetazolamida/farmacología , Altitud , Animales , Deferoxamina/farmacología , Indoles/farmacología , Masculino , Niacinamida/análogos & derivados , Niacinamida/farmacología , Oligonucleótidos , Ratas , Ratas Sprague-Dawley
15.
Free Radic Biol Med ; 82: 50-62, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25656991

RESUMEN

Haptoglobin (Hp) is an approved treatment in Japan for trauma, burns, and massive transfusion-related hemolysis. Additional case reports suggest uses in other acute hemolytic events that lead to acute kidney injury. However, Hp's protective effects on the pulmonary vasculature have not been evaluated within the context of mitigating the consequences of chronic hemoglobin (Hb) exposure in the progression of pulmonary hypertension (PH) secondary to hemolytic diseases. This study was performed to assess the utility of chronic Hp therapy in a preclinical model of Hb and hypoxia-mediated PH. Rats were simultaneously exposed to chronic Hb infusion (35 mg per day) and hypobaric hypoxia for 5 weeks in the presence or absence of Hp treatment (90 mg/kg twice a week). Hp inhibited the Hb plus hypoxia-mediated nonheme iron accumulation in lung and heart tissue, pulmonary vascular inflammation and resistance, and right-ventricular hypertrophy, which suggests a positive impact on impeding the progression of PH. In addition, Hp therapy was associated with a reduction in critical mediators of PH, including lung adventitial macrophage population and endothelial ICAM-1 expression. By preventing Hb-mediated pathology, Hp infusions: (1) demonstrate a critical role for Hb in vascular remodeling associated with hypoxia and (2) suggest a novel therapy for chronic hemolysis-associated PH.


Asunto(s)
Haptoglobinas/farmacología , Hemoglobinas/metabolismo , Hipertensión Pulmonar/patología , Pulmón/irrigación sanguínea , Animales , Línea Celular , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Hipertrofia Ventricular Derecha/patología , Hipoxia , Molécula 1 de Adhesión Intercelular/biosíntesis , Hierro/metabolismo , Enfermedades Pulmonares/patología , Macrófagos Alveolares/patología , Masculino , Oxidación-Reducción , Neumonía/patología , Ratas , Ratas Sprague-Dawley , Enfermedades Vasculares/patología , Remodelación Vascular/efectos de los fármacos , Resistencia Vascular/fisiología
16.
Free Radic Biol Med ; 63: 264-73, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23722164

RESUMEN

Reactive oxygen species (ROS) formed during acute high altitude exposure contribute to cerebral vascular leak and development of acute mountain sickness (AMS). Nuclear factor (erythroid-derived 2)-related factor 2 (Nrf2) is a transcription factor that regulates expression of greater than 90% of antioxidant genes, but prophylactic treatment with Nrf2 activators has not yet been tested as an AMS therapy. We hypothesized that prophylactic activation of the antioxidant genome with Nrf2 activators would attenuate high-altitude-induced ROS formation and cerebral vascular leak and that some drugs currently used to treat AMS symptoms have an additional trait of Nrf2 activation. Drugs commonly used to treat AMS were screened with a luciferase reporter cell system for their effectiveness to activate Nrf2, as well as being tested for their ability to decrease high altitude cerebral vascular leak in vivo. Compounds that showed favorable results for Nrf2 activation from our screen and attenuated high altitude cerebral vascular leak in vivo were further tested in brain microvascular endothelial cells (BMECs) to determine if they attenuated hypoxia-induced ROS production and monolayer permeability. Of nine drugs tested, with the exception of dexamethasone, only drugs that showed the ability to activate Nrf2 (Protandim, methazolamide, nifedipine, amlodipine, ambrisentan, and sitaxentan) decreased high-altitude-induced cerebral vascular leak in vivo. In vitro, Nrf2 activation in BMECs before 24h hypoxia exposure attenuated hypoxic-induced hydrogen peroxide production and permeability. Prophylactic Nrf2 activation is effective at reducing brain vascular leak from acute high altitude exposures. Compared to acetazolamide, methazolamide may offer better protection against AMS. Nifedipine, in addition to its known vasodilatory activities in the lung and protection against high altitude pulmonary edema, may provide protection against brain vascular leak as well.


Asunto(s)
Mal de Altura/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Activación Transcripcional/efectos de los fármacos , Vasodilatadores/administración & dosificación , Mal de Altura/tratamiento farmacológico , Mal de Altura/patología , Animales , Antioxidantes/metabolismo , Cerebelo/irrigación sanguínea , Cerebelo/efectos de los fármacos , Humanos , Hipoxia/tratamiento farmacológico , Hipoxia/metabolismo , Factor 2 Relacionado con NF-E2/genética , Ratas , Vasodilatadores/metabolismo
17.
Regul Pept ; 157(1-3): 51-6, 2009 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-19268691

RESUMEN

Ghrelin is a peptide hormone that has been implicated in the regulation of food intake and energy homeostasis. Ghrelin is predominantly produced in the stomach, but is also expressed in many other tissues where its functions are not well characterized. In the rodent and human pancreas, ghrelin levels peak at late gestation and gradually decline postnatally. Several studies have suggested that ghrelin regulates beta cell function during embryonic development and in the adult. In addition, in a number of mouse models, ghrelin cells appear to replace insulin- and glucagon-producing cells in the islet. In this analysis, we investigated whether the absence or overexpression of ghrelin influenced the development and differentiation of the pancreatic islet during embryonic development. These studies revealed that ghrelin is dispensable for normal pancreas development during gestation. Conversely, we demonstrated that elevated ghrelin in the Nkx2.2 null islets is not responsible for the absence of insulin- and glucagon-producing cells. Finally, we have also determined that in the absence of insulin, ghrelin cells form in their normal numbers and ghrelin is expressed at wild type levels.


Asunto(s)
Ghrelina/metabolismo , Islotes Pancreáticos/citología , Islotes Pancreáticos/crecimiento & desarrollo , Animales , Diferenciación Celular , Ghrelina/deficiencia , Ghrelina/genética , Proteína Homeobox Nkx-2.2 , Proteínas de Homeodominio/metabolismo , Islotes Pancreáticos/embriología , Ratones , Ratones Noqueados , Proteínas Nucleares , ARN Mensajero/genética , Factores de Transcripción/deficiencia , Factores de Transcripción/metabolismo , Proteínas de Pez Cebra
18.
Development ; 134(3): 515-23, 2007 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-17202186

RESUMEN

The homeodomain protein Nkx2.2 (Nkx2-2) is a key regulator of pancreatic islet cell specification in mice; Nkx2.2 is essential for the differentiation of all insulin-producing beta-cells and of the majority of glucagon-producing alpha-cells, and, in its absence, these cell types are converted to a ghrelin cell fate. To understand the molecular functions of Nkx2.2 that regulate these early cell-fate decisions during pancreatic islet development, we created Nkx2.2-dominant-derivative transgenic mice. In the absence of endogenous Nkx2.2, the Nkx2.2-Engrailed-repressor derivative is sufficient to fully rescue glucagon-producing alpha-cells and to partially rescue insulin-producing beta-cells. Interestingly, the insulin-positive cells that do form in the rescued mice do not express the mature beta-cell markers MafA or Glut2 (Slc2a2), suggesting that additional activator functions of Nkx2.2 are required for beta-cell maturation. To explore the mechanism by which Nkx2.2 functions as a repressor in the islet, we assessed the pancreatic expression of the Groucho co-repressors, Grg1, Grg2, Grg3 and Grg4 (Tle1-Tle4), which have been shown to interact with and modulate Nkx2.2 function. We determined that Grg3 is highly expressed in the embryonic pancreas in a pattern similar to Nkx2.2. Furthermore, we show that Grg3 physically interacts with Nkx2.2 through its TN domain. These studies suggest that Nkx2.2 functions predominantly as a transcriptional repressor during specification of endocrine cell types in the pancreas.


Asunto(s)
Células Secretoras de Glucagón/citología , Células Secretoras de Glucagón/metabolismo , Proteínas de Homeodominio/metabolismo , Células Secretoras de Insulina/citología , Células Secretoras de Insulina/metabolismo , Islotes Pancreáticos/crecimiento & desarrollo , Islotes Pancreáticos/metabolismo , Factores de Transcripción/metabolismo , Animales , Secuencia de Bases , Diferenciación Celular , Proteínas Co-Represoras , Cartilla de ADN/genética , Regulación del Desarrollo de la Expresión Génica , Proteína Homeobox Nkx-2.2 , Proteínas de Homeodominio/genética , Islotes Pancreáticos/citología , Ratones , Ratones Noqueados , Ratones Transgénicos , Modelos Biológicos , Fenotipo , Regiones Promotoras Genéticas , Proteínas/genética , Proteínas/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Transactivadores/genética , Factores de Transcripción/genética , Proteínas de Pez Cebra
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA