Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 115
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nucleic Acids Res ; 50(W1): W36-W43, 2022 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-35640594

RESUMEN

Proteins in food and personal care products can pose a risk for an immediate immunoglobulin E (IgE)-mediated allergic response. Bioinformatic tools can assist to predict and investigate the allergenic potential of proteins. Here we present AllerCatPro 2.0, a web server that can be used to predict protein allergenicity potential with better accuracy than other computational methods and new features that help assessors making informed decisions. AllerCatPro 2.0 predicts the similarity between input proteins using both their amino acid sequences and predicted 3D structures towards the most comprehensive datasets of reliable proteins associated with allergenicity. These datasets currently include 4979 protein allergens, 162 low allergenic proteins, and 165 autoimmune allergens with manual expert curation from the databases of WHO/International Union of Immunological Societies (IUIS), Comprehensive Protein Allergen Resource (COMPARE), Food Allergy Research and Resource Program (FARRP), UniProtKB and Allergome. Various examples of profilins, autoimmune allergens, low allergenic proteins, very large proteins, and nucleotide input sequences showcase the utility of AllerCatPro 2.0 for predicting protein allergenicity potential. The AllerCatPro 2.0 web server is freely accessible at https://allercatpro.bii.a-star.edu.sg.


Asunto(s)
Alérgenos , Computadores , Internet , Proteínas , Programas Informáticos , Humanos , Alérgenos/química , Alérgenos/inmunología , Secuencia de Aminoácidos , Hipersensibilidad a los Alimentos/etiología , Hipersensibilidad a los Alimentos/inmunología , Proteínas/química , Proteínas/inmunología , Cosméticos/efectos adversos , Cosméticos/química , Conformación Proteica , Conjuntos de Datos como Asunto
2.
J Allergy Clin Immunol ; 151(5): 1178-1190, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36932025

RESUMEN

Allergenic cross-reactivity among food allergens complicates the diagnosis and management of food allergy. This can result in many patients being sensitized (having allergen-specific IgE) to foods without exhibiting clinical reactivity. Some food groups such as shellfish, fish, tree nuts, and peanuts have very high rates of cross-reactivity. In contrast, relatively low rates are noted for grains and milk, whereas many other food families have variable rates of cross-reactivity or are not well studied. Although classical cross-reactive carbohydrate determinants are clinically not relevant, α-Gal in red meat through tick bites can lead to severe reactions. Multiple sensitizations to tree nuts complicate the diagnosis and management of patients allergic to peanut and tree nut. This review discusses cross-reactive allergens and cross-reactive carbohydrate determinants in the major food groups, and where available, describes their B-cell and T-cell epitopes. The clinical relevance of these cross-reactive B-cell and T-cell epitopes is highlighted and their possible impact on allergen-specific immunotherapy for food allergy is discussed.


Asunto(s)
Epítopos de Linfocito T , Hipersensibilidad a los Alimentos , Animales , Hipersensibilidad a los Alimentos/terapia , Hipersensibilidad a los Alimentos/diagnóstico , Nueces , Alérgenos , Inmunoglobulina E , Reacciones Cruzadas
3.
Int J Mol Sci ; 25(8)2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38674116

RESUMEN

Due to the widespread use of shellfish ingredients in food products, accurate food labelling is urgently needed for consumers with shellfish allergies. Most crustacean allergen detection systems target the immunorecognition of the allergenic protein tropomyosin. However, this mode of detection may be affected by an origin-dependent protein composition. This study determined if the geographic location of capture, or aquaculture, influenced the allergenic protein profiles of Black Tiger Shrimp (Penaeus monodon), one of the most farmed and consumed shrimp species worldwide. Protein composition was analysed in shrimp from nine different locations in the Asia-Pacific by SDS-PAGE, immunoblotting, and mass spectrometry. Ten of the twelve known shrimp allergens were detected, but with considerable differences between locations. Sarcoplasmic calcium-binding protein, myosin light chain, and tropomyosin were the most abundant allergens in all locations. Hemocyanin-specific antibodies could identify up to six different isoforms, depending on the location of origin. Similarly, tropomyosin abundance varied by up to 13 times between locations. These findings suggest that allergen abundance may be related to shrimp origin and, thus, shrimp origin might directly impact the readout of commercial crustacean allergen detection kits, most of which target tropomyosin, and this should be considered in food safety assessments.


Asunto(s)
Alérgenos , Inocuidad de los Alimentos , Penaeidae , Tropomiosina , Animales , Alérgenos/análisis , Alérgenos/inmunología , Penaeidae/inmunología , Tropomiosina/inmunología , Hipersensibilidad a los Mariscos/inmunología , Mariscos/análisis , Mariscos/efectos adversos
4.
Allergy ; 78(12): 3221-3234, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37650248

RESUMEN

BACKGROUND: Major fish allergens, including parvalbumin (PV), are heat stable and can withstand extensive cooking processes. Thus, the management of fish allergy generally relies on complete avoidance. Fish-allergic patients may be advised to consume canned fish, as some fish-allergic individuals have reported tolerance to canned fish. However, the safety of consuming canned fish has not been evaluated with comprehensive immunological and molecular analysis of canned fish products. METHODS: We characterized the in vitro immunoreactivity of serum obtained from fish-allergic subjects to canned fish. Seventeen canned fish products (salmon n = 8; tuna n = 7; sardine n = 2) were assessed for the content and integrity of PV using allergen-specific antibodies. Subsequently, the sIgE binding of five selected products was evaluated for individual fish-allergic patients (n = 53). Finally, sIgE-binding proteins were identified by mass spectrometry. RESULTS: The canned fish showed a markedly reduced PV content and binding to PV-specific antibodies compared with conventionally cooked fish. However, PV and other heat-stable fish allergens, including tropomyosin and collagen, still maintained their sIgE-binding capacity. Of 53 patients, 66% showed sIgE binding to canned fish proteins. The canned sardine contained proteins bound to sIgE from 51% of patients, followed by canned salmon (43%-45%) and tuna (8%-17%). PV was the major allergen in canned salmon and sardine. Tropomyosin and/or collagen also showed sIgE binding. CONCLUSION: We showed that canned fish products may not be safe for all fish-allergic patients. Canned fish products should only be considered into the diet of individuals with fish allergy, after detailed evaluation which may include in vitro diagnostics to various heat-stable fish allergens and food challenge conducted in suitable environments.


Asunto(s)
Alérgenos , Hipersensibilidad a los Alimentos , Animales , Humanos , Tropomiosina , Peces , Anticuerpos , Salmón , Productos Pesqueros/efectos adversos , Parvalbúminas , Colágeno
5.
Pediatr Allergy Immunol ; 33(5): e13781, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35616897

RESUMEN

BACKGROUND: Clinical cross-reactivity between bony fish, cartilaginous fish, frog, and chicken muscle has previously been demonstrated in fish-allergic patients. In indicative studies, two reports of anaphylaxis following the consumption of crocodile meat and IgE-cross-binding were linked to the major fish allergen parvalbumin (PV). This study investigates IgE-binding proteins in crocodile meat with a focus on PV and their clinical relevance. METHODS: Proteins were extracted from muscle tissue of crocodile, three bony fish, and two cartilaginous fish. A cohort of fish-allergic pediatric patients (n = 77) underwent allergen skin prick testing (SPT) to three fish preparations (n = 77) and crocodile (n = 12). IgE-binding proteins were identified and quantified by SDS-PAGE, mass spectrometric analyses, and immunoblotting using commercial and in-house antibodies, as well as individual and pooled patients' serum. PV isoforms were purified or recombinantly expressed before immunological analyses, including human mast cell degranulation assay. RESULTS: Of the tissues analyzed, PV was most abundant in heated crocodile preparation, triggering an SPT of ≥3 mm in 8 of 12 (67%) fish-allergic patients. Seventy percent (31 of 44) of fish PV-sensitized patients demonstrated IgE-binding to crocodile PV. Crocodile ß-PV was the major IgE-binding protein but 20-fold less abundant than α-PV. Cellular reactivity was demonstrated for ß-PV and epitopes predicted, explaining frequent IgE-cross-binding of ß-PVs. Both PV isoforms are now registered as the first reptile allergens with the WHO/IUIS (ß-PV as Cro p 1 and α-PV as Cro p 2). CONCLUSION: Fish-allergic individuals may be at risk of an allergy to crocodile and should seek specialist advice before consuming crocodilian meat.


Asunto(s)
Caimanes y Cocodrilos , Hipersensibilidad a los Alimentos , Alérgenos , Animales , Niño , Reacciones Cruzadas , Peces , Hipersensibilidad a los Alimentos/diagnóstico , Humanos , Inmunoglobulina E , Parvalbúminas
6.
Allergy ; 76(5): 1443-1453, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-32860256

RESUMEN

BACKGROUND: Diagnostic tests for fish allergy are hampered by the large number of under-investigated fish species. Four salmon allergens are well-characterized and registered with the WHO/IUIS while no catfish allergens have been described so far. In 2008, freshwater-cultured catfish production surpassed that of salmon, the globally most-cultured marine species. We aimed to identify, quantify, and compare all IgE-binding proteins in salmon and catfish. METHODS: Seventy-seven pediatric patients with clinically confirmed fish allergy underwent skin prick tests to salmon and catfish. The allergen repertoire of raw and heated protein extracts was evaluated by immunoblotting using five allergen-specific antibodies and patients' serum followed by mass spectrometric analyses. RESULTS: Raw and heated extracts from catfish displayed a higher frequency of IgE-binding compared to those from salmon (77% vs 70% and 64% vs 53%, respectively). The major fish allergen parvalbumin demonstrated the highest IgE-binding capacity (10%-49%), followed by triosephosphate isomerase (TPI; 19%-34%) in raw and tropomyosin (6%-32%) in heated extracts. Six previously unidentified fish allergens, including TPI, were registered with the WHO/IUIS. Creatine kinase from salmon and catfish was detected by IgE from 14% and 10% of patients, respectively. Catfish L-lactate dehydrogenase, glyceraldehyde-3-phosphate dehydrogenase, pyruvate kinase, and glucose-6-phosphate isomerase showed IgE-binding for 6%-13% of patients. In salmon, these proteins could not be separated successfully. CONCLUSIONS: We detail the allergen repertoire of two highly farmed fish species. IgE-binding to fish tropomyosins and TPIs was demonstrated for the first time in a large patient cohort. Tropomyosins, in addition to parvalbumins, should be considered for urgently needed improved fish allergy diagnostics.


Asunto(s)
Alérgenos/inmunología , Hipersensibilidad a los Alimentos , Animales , Bagres , Niño , Hipersensibilidad a los Alimentos/diagnóstico , Humanos , Parvalbúminas , Salmón
7.
Mass Spectrom Rev ; 38(3): 221-238, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-29073341

RESUMEN

Metabolomics, which is the metabolites profiling in biological matrices, is a key tool for biomarker discovery and personalized medicine and has great potential to elucidate the ultimate product of the genomic processes. Over the last decade, metabolomics studies have identified several relevant biomarkers involved in complex clinical phenotypes using diverse biological systems. Most diseases result in signature metabolic profiles that reflect the sums of external and internal cellular activities. Metabolomics has a major role in clinical practice as it represents >95% of the workload in clinical laboratories worldwide. Many of these metabolites require different analytical platforms, such as Nuclear Magnetic Resonance (NMR), Mass Spectrometry (MS), and Ultra Performance Liquid Chromatography (UPLC), while many clinically relevant metabolites are still not routinely amenable to detection using currently available assays. Combining metabolomics with genomics, transcriptomics, and proteomics studies will result in a significantly improved understanding of the disease mechanisms and the pathophysiology of the target clinical phenotype. This comprehensive approach will represent a major step forward toward providing precision medical care, in which individual is accounted for variability in genes, environment, and personal lifestyle. In this review, we compare and evaluate the metabolomics strategies and studies that focus on the discovery of biomarkers that have "personalized" diagnostic, prognostic, and therapeutic value, validated for monitoring disease progression and responses to various management regimens.


Asunto(s)
Metaboloma , Metabolómica/métodos , Animales , Biomarcadores/análisis , Biomarcadores/metabolismo , Cromatografía Líquida de Alta Presión/métodos , Diabetes Mellitus/metabolismo , Humanos , Espectroscopía de Resonancia Magnética/métodos , Espectrometría de Masas/métodos , Errores Innatos del Metabolismo/metabolismo , Neoplasias/metabolismo , Medicina de Precisión/métodos
8.
Allergy ; 75(11): 2909-2919, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32436591

RESUMEN

BACKGROUND: Tropomyosins are highly conserved proteins, an attribute that forms the molecular basis for their IgE antibody cross-reactivity. Despite sequence similarities, their allergenicity varies greatly between ingested and inhaled invertebrate sources. In this study, we investigated the relationship between the structural stability of different tropomyosins, their endolysosomal degradation patterns, and T-cell reactivity. METHODS: We investigated the differences between four tropomyosins-the major shrimp allergen Pen m 1 and the minor allergens Der p 10 (dust mite), Bla g 7 (cockroach), and Ani s 3 (fish parasite)-in terms of IgE binding, structural stability, endolysosomal degradation and subsequent peptide generation, and T-cell cross-reactivity in a BALB/c murine model. RESULTS: Tropomyosins displayed different melting temperatures, which did not correlate with amino acid sequence similarities. Endolysosomal degradation experiments demonstrated differential proteolytic digestion, as a function of thermal stability, generating different peptide repertoires. Pen m 1 (Tm 42°C) and Der p 10 (Tm 44°C) elicited similar patterns of endolysosomal degradation, but not Bla g 7 (Tm 63°C) or Ani s 3 (Tm 33°C). Pen m 1-specific T-cell clones, with specificity for regions highly conserved in all four tropomyosins, proliferated weakly to Der p 10, but did not proliferate to Bla g 7 and Ani s 3, indicating lack of T-cell epitope cross-reactivity. CONCLUSIONS: Tropomyosin T-cell cross-reactivity, unlike IgE cross-reactivity, is dependent on structural stability rather than amino acid sequence similarity. These findings contribute to our understanding of cross-sensitization among different invertebrates and design of suitable T-cell peptide-based immunotherapies for shrimp and related allergies.


Asunto(s)
Alérgenos , Tropomiosina , Animales , Reacciones Cruzadas , Inmunoglobulina E , Ratones , Linfocitos T
9.
Int J Mol Sci ; 22(1)2020 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-33375120

RESUMEN

Shellfish allergy affects 2% of the world's population and persists for life in most patients. The diagnosis of shellfish allergy, in particular shrimp, is challenging due to the similarity of allergenic proteins from other invertebrates. Despite the clinical importance of immunological cross-reactivity among shellfish species and between allergenic invertebrates such as dust mites, the underlying molecular basis is not well understood. Here we mine the complete transcriptome of five frequently consumed shrimp species to identify and compare allergens with all known allergen sources. The transcriptomes were assembled de novo, using Trinity, from raw RNA-Seq data of the whiteleg shrimp (Litopenaeus vannamei), black tiger shrimp (Penaeus monodon), banana shrimp (Fenneropenaeus merguiensis), king shrimp (Melicertus latisulcatus), and endeavour shrimp (Metapenaeus endeavouri). BLAST searching using the two major allergen databases, WHO/IUIS Allergen Nomenclature and AllergenOnline, successfully identified all seven known crustacean allergens. The analyses revealed up to 39 unreported allergens in the different shrimp species, including heat shock protein (HSP), alpha-tubulin, chymotrypsin, cyclophilin, beta-enolase, aldolase A, and glyceraldehyde-3-phosphate dehydrogenase (G3PD). Multiple sequence alignment (Clustal Omega) demonstrated high homology with allergens from other invertebrates including mites and cockroaches. This first transcriptomic analyses of allergens in a major food source provides a valuable resource for investigating shellfish allergens, comparing invertebrate allergens and future development of improved diagnostics for food allergy.


Asunto(s)
Alérgenos/genética , Proteínas de Artrópodos/genética , Hipersensibilidad a los Alimentos/genética , Perfilación de la Expresión Génica/métodos , Penaeidae/genética , Transcriptoma/genética , Alérgenos/inmunología , Animales , Proteínas de Artrópodos/clasificación , Proteínas de Artrópodos/inmunología , Reacciones Cruzadas/inmunología , Evolución Molecular , Hipersensibilidad a los Alimentos/inmunología , Humanos , Penaeidae/clasificación , Penaeidae/inmunología , Filogenia , Alimentos Marinos/análisis , Especificidad de la Especie , Tropomiosina/genética , Tropomiosina/inmunología
10.
J Sci Food Agric ; 100(12): 4353-4363, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32356561

RESUMEN

BACKGROUND: Fish is a major food and allergen source, requiring safety declarations on packages. Enzyme-linked immunosorbent assays (ELISAs) are often used to ensure that the product meets the required standards with regard to the presence of allergens. Over 1000 different fish species are traded and consumed worldwide, and they are increasingly provided by aquaculture. Up to 3% of the general population is at risk of sometimes fatal allergic reactions to fish, requiring strict avoidance of this commodity. The aim of this study is to evaluate the capacity of three commercially available ELISA tests to detect a wide variety of bony and cartilaginous fish and their products, which is essential to ensure reliable and safe food labeling. RESULTS: The detection rates for 57 bony fish ranged from 26% to 61%. Common European and North American species, including carp, cod, and salmon species, demonstrated a higher detection rate than those from the Asia-Pacific region, including pangasius and several mackerel and tuna species. Among the 17 canned bony fish products, only 65% to 86% were detected, with tuna showing the lowest rate. None of the cartilaginous fish (n = 9), other vertebrates (n = 8), or shellfish (n = 5) were detected. CONCLUSIONS: We demonstrated that three commercial fish ELISA kits had a limited capacity to detect fish and their products. The complexity of fish as a protein source that is increasingly utilized means that there is an urgent need for improved detection methods. This is crucial for the food industry to provide safe seafood products and comply with international legislation. © 2020 Society of Chemical Industry.


Asunto(s)
Alérgenos/análisis , Ensayo de Inmunoadsorción Enzimática/métodos , Proteínas de Peces/análisis , Peces/inmunología , Alérgenos/inmunología , Animales , Ensayo de Inmunoadsorción Enzimática/economía , Productos Pesqueros/análisis , Proteínas de Peces/inmunología , Peces/clasificación , Alimentos Marinos/análisis
12.
Allergy ; 74(2): 370-379, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30252138

RESUMEN

BACKGROUND: Hyper-IgE syndromes (HIES) are a clinically overlapping, heterogeneous group of inborn errors of immunity characterized by elevated serum IgE level, eosinophilia, atopy, and immune dysregulation. Deficiency of DOCK8 protein is potentially a life-threatening autosomal recessive HIES and only curable with bone marrow transplantation. Hence, the diagnosis of DOCK8 deficiency is critical and should be sought at an early stage to initiate definitive therapy. METHODS: Serum samples from patients with DOCK8 deficiency and atopic dermatitis were profiled on a cytokine/chemokine panel for potential differential expression. RESULTS: CXCL10 and TNF-A were upregulated in DOCK8 patients when compared to AD, possibly contributing toward increased susceptibility to infections and cancer. In contrast, epidermal growth factor (EGF) was significantly downregulated in a subgroup of DOCK8-deficient and AD patients, while IL-31 expression was comparable between both DOCK8-deficient and AD cohorts, possibly contributing toward pruritus seen in both groups. CONCLUSION: This comprehensive cytokine profile in HIES patients reveals distinctive biomarkers that differentiate between the DOCK8-deficient and AD patients. The unique expression profile of various inflammatory cytokines in patients with DOCK8 deficiency vs atopic dermatitis likely reflects disease-specific perturbations in multiple cellular processes and pathways leading to a predisposition to infections and allergies seen in these patients. These data agree with the role for EGF replacement therapy in EGF-deficient individuals with AD as well as DOCK8 deficiency through a potential shared pathway. In addition, these novel biomarkers may be potentially useful in distinguishing DOCK8 deficiency from AD allowing early-targeted treatment options.


Asunto(s)
Quimiocinas/metabolismo , Citocinas/metabolismo , Dermatitis Atópica/etiología , Dermatitis Atópica/metabolismo , Factores de Intercambio de Guanina Nucleótido/deficiencia , Adolescente , Adulto , Biomarcadores , Línea Celular , Niño , Dermatitis Atópica/diagnóstico , Susceptibilidad a Enfermedades , Femenino , Humanos , Inmunoglobulina E/inmunología , Masculino , Mutación , Curva ROC , Adulto Joven
13.
Allergy ; 74(10): 1852-1871, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-30953601

RESUMEN

Occupational exposure to foods is responsible for up to 25% of cases of occupational asthma and rhinitis. Animal and vegetable high-molecular-weight proteins present in aerosolized foods during food processing, additives, preservatives, antioxidants, and food contaminants are the main inhalant allergen sources. Most agents typically cause IgE-mediated allergic reactions, causing a distinct form of food allergy (Class 3 food allergy). The allergenicity of a food protein, allergen exposure levels, and atopy are important risk factors. Diagnosis relies on a thorough medical and occupational history, functional assessment, assessment of sensitization, including component-resolved diagnostics where appropriate, and in selected cases specific inhalation tests. Exposure assessment, including allergen determination, is a cornerstone for establishing preventive measures. Management includes allergen exposure avoidance or reduction (second best option), pharmacological treatment, assessment of impairment, and worker's compensation. Further studies are needed to identify and characterize major food allergens and define occupational exposure limits, evaluate the relative contribution of respiratory versus cutaneous sensitization to food antigens, evaluate the role of raw versus cooked food in influencing risk, and define the absolute or relative contraindication of patients with ingestion-related food allergy, pollinosis, or oral allergy syndrome continuing to work with exposure to aerosolized food allergens.


Asunto(s)
Manipulación de Alimentos , Hipersensibilidad a los Alimentos/diagnóstico , Hipersensibilidad a los Alimentos/inmunología , Exposición Profesional/efectos adversos , Hipersensibilidad Respiratoria/diagnóstico , Hipersensibilidad Respiratoria/etiología , Asma Ocupacional , Diagnóstico Diferencial , Manejo de la Enfermedad , Susceptibilidad a Enfermedades , Hipersensibilidad a los Alimentos/epidemiología , Hipersensibilidad a los Alimentos/terapia , Humanos , Hipersensibilidad Respiratoria/epidemiología , Hipersensibilidad Respiratoria/terapia , Medición de Riesgo , Factores de Riesgo
14.
Allergy ; 74(7): 1352-1363, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30762884

RESUMEN

BACKGROUND: Commercial allergen extracts for allergy skin prick testing (SPT) are widely used for diagnosing fish allergy. However, there is currently no regulatory requirement for standardization of protein and allergen content, potentially impacting the diagnostic reliability of SPTs. We therefore sought to analyse commercial fish extracts for the presence and concentration of fish proteins and in vitro IgE reactivity using serum from fish-allergic patients. METHODS: Twenty-six commercial fish extracts from five different manufacturers were examined. The protein concentrations were determined, protein compositions analysed by mass spectrometry, followed by SDS-PAGE and subsequent immunoblotting with antibodies detecting 4 fish allergens (parvalbumin, tropomyosin, aldolase and collagen). IgE-reactive proteins were identified using serum from 16 children with confirmed IgE-mediated fish allergy, with focus on cod, tuna and salmon extracts. RESULTS: The total protein, allergen concentration and IgE reactivity of the commercial extracts varied over 10-fold between different manufacturers and fish species. The major fish allergen parvalbumin was not detected by immunoblotting in 6/26 extracts. In 7/12 extracts, five known fish allergens were detected by mass spectrometry. For cod and tuna, almost 70% of patients demonstrated the strongest IgE reactivity to collagen, tropomyosin, aldolase A or ß-enolase but not parvalbumin. CONCLUSIONS: Commercial fish extracts often contain insufficient amounts of important allergens including parvalbumin and collagen, resulting in low IgE reactivity. A comprehensive proteomic approach for the evaluation of SPT extracts for their utility in allergy diagnostics is presented. There is an urgent need for standardized allergen extracts, which will improve the diagnosis and management of fish allergy.


Asunto(s)
Alérgenos/inmunología , Variación Antigénica/inmunología , Productos Pesqueros/efectos adversos , Hipersensibilidad a los Alimentos/diagnóstico , Hipersensibilidad a los Alimentos/inmunología , Pruebas Cutáneas , Adolescente , Animales , Anticuerpos/inmunología , Niño , Preescolar , Femenino , Peces/inmunología , Humanos , Inmunoglobulina E/inmunología , Lactante , Masculino , Espectrometría de Masas
15.
Pediatr Allergy Immunol ; 30(3): 348-355, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30793379

RESUMEN

BACKGROUND: There is a paucity of data on the prevalence of food allergy (FA) in Vietnam. A cross-sectional, population-based study was conducted to evaluate the current prevalence of FA among 2- to 6-year-old children in two different regions in Vietnam. METHOD: A structured, anonymous questionnaire, modified from published FA epidemiologic studies and based on EAACI guidelines, was distributed to parents/guardians of participating children in Hue City (urban area) and Tien Giang Province (rural area). Data collected from the survey were statistically analyzed to generate the prevalence of self-reported and doctor-diagnosed FA and overarching pattern of food allergens. RESULTS: A total of 8620 responses were collected (response rate 81.5%). Children in Tien Giang reported more than twice the food-induced adverse reactions seen in children in Hue (47.8% vs. 20.5%). In contrast, children in Hue showed higher self-reported FA (9.8%) and doctor-diagnosed FA rates (8.4%) than children in Tien Giang (7.9% and 5.0%, respectively). Crustacean was the predominant allergy-inducing food in both areas (330 of 580 cases, 56.9%), followed by fish, mollusk, beef, milk, and egg. However, substantial variations of FA patterns were seen between the study sites. Geographic location and co-morbidities of other allergic diseases were key risk factors for FA (P < 0.001). CONCLUSIONS: The prevalence of FA in Vietnamese children seems to be higher than previously reported from other Asian countries. Crustacean is the predominant allergy-inducing food among participating preschool children in Vietnam. The variation of reported food allergen sources across different socio-economic locations could imply different eating habits or the participation of indoor and outdoor allergen exposure.


Asunto(s)
Hipersensibilidad a los Alimentos/epidemiología , Niño , Preescolar , Estudios Transversales , Femenino , Alimentos , Humanos , Masculino , Prevalencia , Factores de Riesgo , Factores Socioeconómicos , Encuestas y Cuestionarios , Vietnam/epidemiología
17.
Am J Ind Med ; 61(11): 952-958, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30232809

RESUMEN

BACKGROUND: Cellulose is an insoluble plant polysaccharide produced from soft-wood pulp. Although chronic respiratory effects associated with high cellulose-based dust levels have been previously described, occupational asthma has not. A 37 year old machine operator in a sanitary pad production factory presented with new-onset work-related asthma symptoms for two years. METHODS: The worker underwent clinical, pulmonological and immunological (skin prick tests, serum specific IgE determinations) evaluation using standardised procedures. The cellulose product was subjected to scanning electron microscopy (SEM) examination. A specific inhalation challenge test performed with the cellulose product ensured that dust concentrations were kept below 5 mg/m3 . RESULTS: The subject was not atopic and did not have elevated IgE to pine wood or xylanase. The cellulose product appeared to be free of protein contaminants on SEM. The Work Effect Index computed on serial PEF recordings was elevated (WEI = 3.8).Specific inhalational challenge with the cellulose product dust revealed a late bronchial response (39% drop in FEV1 at 3 hours post challenge). CONCLUSION: This is the first reported case of occupational asthma to a cellulose fibre product. A non-specific immune reaction or irritant response seems likely. These fibres may therefore not be biologically inert. The occupational exposure limit of 10 mg/m3 generally used for cellulose dust appears to be non-protective.


Asunto(s)
Asma Ocupacional/inducido químicamente , Celulosa , Polvo/análisis , Exposición Profesional/efectos adversos , Adulto , Blanqueadores , Pruebas de Provocación Bronquial , Humanos , Masculino , Instalaciones Industriales y de Fabricación , Pruebas Cutáneas
20.
Parasitol Res ; 116(12): 3291-3301, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29038898

RESUMEN

Tropomyosin (TM) is a major allergen in shellfish, known to cross-react with mite, cockroach and/or some roundworm (nematode) TM. In this study, we aimed to express and purify TM from the parasitic nematode Anisakis pegreffii and also to characterise its cross-reactivity with TM from shellfish. A. pegreffii was isolated from the flathead tiger fish (Neoplatycephalus richardsoni) and characterised using single-strand conformation polymorphism (SSCP)-based sequencing of the first and second internal transcribed spacers (ITS-1 and ITS-2) of nuclear ribosomal DNA. The recombinant tropomyosin (rTM) of A. pegreffii was expressed, purified and confirmed by immunohistochemistry, sequencing and LC-MS/MS analyses. Immunohistochemistry showed the muscle and the base layer of the third-stage larvae (L3) of A. pegreffii as the location of TM in A. pegreffii. The molecular relationship of TM of A. pegreffii with homologs from other nematodes and crustaceans was inferred from phylogenetic analysis. Immunogenicity of TM from A. pegreffii was tested by immunoblotting, which showed that rTM from A. pegreffii binds to IgE from sera of patients with allergy to crustaceans. Immunoblotting also showed that the anti-TM monoclonal antibody (MAb) did not recognise rTM from A. pegreffii. The rTM from A. pegreffii was, however, recognised by anti-TM polyclonal antibodies (PAbs) as well as anti-crustacean polyclonal antibodies (PAbs). The detection of specific serum IgE antibody against parasite TM has been proposed as a useful approach for the diagnosis of parasite-induced allergy. The findings of this study merit further exploration of the cross-reactive allergenic proteins of Anisakis for improved, future diagnosis of allergenic diseases.


Asunto(s)
Anisakis/genética , Tropomiosina/genética , Alérgenos/genética , Alérgenos/inmunología , Animales , Anisakis/inmunología , Cromatografía Liquida , Reacciones Cruzadas , Humanos , Immunoblotting , Larva , Perciformes/parasitología , Filogenia , Tropomiosina/inmunología , Tropomiosina/aislamiento & purificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA