Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
bioRxiv ; 2024 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-39314286

RESUMEN

Background: Smooth muscle cell (SMC) plasticity and phenotypic switching play prominent roles in the pathogenesis of multiple diseases, but their role in tumorigenesis is unknown. We investigated whether and how SMC diversity and plasticity plays a role in tumor angiogenesis and the tumor microenvironment. Methods and Results: We use SMC-specific lineage-tracing mouse models and single cell RNA sequencing to observe the phenotypic diversity of SMCs participating in tumor vascularization. We find that a significant proportion of SMCs adopt a phenotype traditionally associated with macrophage-like cells. These cells are transcriptionally similar to 'resolution phase' M2b macrophages, which have been described to have a role in inflammation resolution. Computationally predicted by the ligand-receptor algorithm CellChat, signaling from BST2 on the surface of tumor cells to PIRA2 on SMCs promote this phenotypic transition; in vitro SMC assays demonstrate upregulation of macrophage transcriptional programs, and increased proliferation, migration, and phagocytic ability when exposed to BST2. Knockdown of BST2 in the tumor significantly decreases the transition towards a macrophage-like phenotype, and cells that do transition have a comparatively higher inflammatory signal typically associated with anti-tumor effect. Conclusion: As BST2 is known to be a poor prognostic marker in multiple cancers where it is associated with an M2 macrophage-skewed TME, these studies suggest that phenotypically switched SMCs may have a previously unidentified role in this immunosuppressive milieu. Further translational work is needed to understand how this phenotypic switch could influence the response to anti-cancer agents and if targeted inhibition of SMC plasticity would be therapeutically beneficial.

2.
Nat Commun ; 15(1): 8034, 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39271657

RESUMEN

Atherosclerosis is an inflammatory disorder responsible for cardiovascular disease. Reactivation of efferocytosis, the phagocytic removal of cells by macrophages, has emerged as a translational target for atherosclerosis. Systemic blockade of the key 'don't-eat-me' molecule, CD47, triggers the engulfment of apoptotic vascular tissue and potently reduces plaque burden. However, it also induces red blood cell clearance, leading to anemia. To overcome this, we previously developed a macrophage-specific nanotherapy loaded with a chemical inhibitor that promotes efferocytosis. Because it was found to be safe and effective in murine studies, we aimed to advance our nanoparticle into a porcine model of atherosclerosis. Here, we demonstrate that production can be scaled without impairing nanoparticle function. At an early stage of disease, we find our nanotherapy reduces apoptotic cell accumulation and inflammation in the atherosclerotic lesion. Notably, this therapy does not induce anemia, highlighting the translational potential of targeted macrophage checkpoint inhibitors.


Asunto(s)
Anemia , Aterosclerosis , Antígeno CD47 , Modelos Animales de Enfermedad , Inflamación , Macrófagos , Nanopartículas , Fagocitosis , Animales , Aterosclerosis/tratamiento farmacológico , Aterosclerosis/patología , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Nanopartículas/química , Antígeno CD47/metabolismo , Antígeno CD47/antagonistas & inhibidores , Porcinos , Inflamación/patología , Fagocitosis/efectos de los fármacos , Apoptosis/efectos de los fármacos , Humanos , Placa Aterosclerótica/patología , Ratones , Masculino
3.
Cell Genom ; 4(1): 100465, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38190101

RESUMEN

Genome-wide association studies (GWASs) have identified hundreds of risk loci for coronary artery disease (CAD). However, non-European populations are underrepresented in GWASs, and the causal gene-regulatory mechanisms of these risk loci during atherosclerosis remain unclear. We incorporated local ancestry and haplotypes to identify quantitative trait loci for expression (eQTLs) and splicing (sQTLs) in coronary arteries from 138 ancestrally diverse Americans. Of 2,132 eQTL-associated genes (eGenes), 47% were previously unreported in coronary artery; 19% exhibited cell-type-specific expression. Colocalization revealed subgroups of eGenes unique to CAD and blood pressure GWAS. Fine-mapping highlighted additional eGenes, including TBX20 and IL5. We also identified sQTLs for 1,690 genes, among which TOR1AIP1 and ULK3 sQTLs demonstrated the importance of evaluating splicing to accurately identify disease-relevant isoform expression. Our work provides a patient-derived coronary artery eQTL resource and exemplifies the need for diverse study populations and multifaceted approaches to characterize gene regulation in disease processes.


Asunto(s)
Vasos Coronarios , Estudio de Asociación del Genoma Completo , Humanos , Predisposición Genética a la Enfermedad/genética , Regulación de la Expresión Génica , Sitios de Carácter Cuantitativo/genética
4.
medRxiv ; 2023 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-36824883

RESUMEN

Genome-wide association studies (GWAS) have identified hundreds of genetic risk loci for coronary artery disease (CAD). However, non-European populations are underrepresented in GWAS and the causal gene-regulatory mechanisms of these risk loci during atherosclerosis remain unclear. We incorporated local ancestry and haplotype information to identify quantitative trait loci (QTL) for gene expression and splicing in coronary arteries obtained from 138 ancestrally diverse Americans. Of 2,132 eQTL-associated genes (eGenes), 47% were previously unreported in coronary arteries and 19% exhibited cell-type-specific expression. Colocalization analysis with GWAS identified subgroups of eGenes unique to CAD and blood pressure. Fine-mapping highlighted additional eGenes of interest, including TBX20 and IL5 . Splicing (s)QTLs for 1,690 genes were also identified, among which TOR1AIP1 and ULK3 sQTLs demonstrated the importance of evaluating splicing events to accurately identify disease-relevant gene expression. Our work provides the first human coronary artery eQTL resource from a patient sample and exemplifies the necessity of diverse study populations and multi-omic approaches to characterize gene regulation in critical disease processes.

5.
IEEE Trans Syst Man Cybern B Cybern ; 42(4): 1155-68, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22394581

RESUMEN

This paper addresses the problem of visual control of a set of mobile robots. In our framework, the perception system consists of an uncalibrated flying camera performing an unknown general motion. The robots are assumed to undergo planar motion considering nonholonomic constraints. The goal of the control task is to drive the multirobot system to a desired rendezvous configuration relying solely on visual information given by the flying camera. The desired multirobot configuration is defined with an image of the set of robots in that configuration without any additional information. We propose a homography-based framework relying on the homography induced by the multirobot system that gives a desired homography to be used to define the reference target, and a new image-based control law that drives the robots to the desired configuration by imposing a rigidity constraint. This paper extends our previous work, and the main contributions are that the motion constraints on the flying camera are removed, the control law is improved by reducing the number of required steps, the stability of the new control law is proved, and real experiments are provided to validate the proposal.

6.
Nat Genet ; 54(6): 804-816, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35590109

RESUMEN

Coronary artery disease (CAD) is a complex inflammatory disease involving genetic influences across cell types. Genome-wide association studies have identified over 200 loci associated with CAD, where the majority of risk variants reside in noncoding DNA sequences impacting cis-regulatory elements. Here, we applied single-nucleus assay for transposase-accessible chromatin with sequencing to profile 28,316 nuclei across coronary artery segments from 41 patients with varying stages of CAD, which revealed 14 distinct cellular clusters. We mapped ~320,000 accessible sites across all cells, identified cell-type-specific elements and transcription factors, and prioritized functional CAD risk variants. We identified elements in smooth muscle cell transition states (for example, fibromyocytes) and functional variants predicted to alter smooth muscle cell- and macrophage-specific regulation of MRAS (3q22) and LIPA (10q23), respectively. We further nominated key driver transcription factors such as PRDM16 and TBX2. Together, this single-nucleus atlas provides a critical step towards interpreting regulatory mechanisms across the continuum of CAD risk.


Asunto(s)
Enfermedad de la Arteria Coronaria , Estudio de Asociación del Genoma Completo , Cromatina/genética , Enfermedad de la Arteria Coronaria/genética , Enfermedad de la Arteria Coronaria/metabolismo , Humanos , Polimorfismo de Nucleótido Simple/genética , Factores de Transcripción/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA