Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Plant Res ; 133(6): 911-924, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33106966

RESUMEN

To further knowledge on cell wall composition in early land plants, we localized cell wall constituents in placental cells of the liverwort Marchantia polymorpha L. using monoclonal antibodies (MAbs) in the transmission electron microscope and histochemical staining. The placenta of M. polymorpha is similar to the majority of bryophytes in that both generations contain transfer cells with extensive wall ingrowths. Although the four major cell wall polymers, i.e., cellulose, pectins, hemicelluloses, and arabinogalactan proteins, are present, there are variations in the richness and specificity across generations. An abundance of homogalacturonan pectins in all placental cell walls is consistent with maintaining cell wall permeability and an acidic apoplastic pH necessary for solute transport. Although similar in ultrastructure, transfer cell walls on the sporophyte side in M. polymorpha are enriched with xyloglucans and diverse AGPs not detected on the gametophyte side of the placenta. Gametophyte wall ingrowths are more uniform in polymer composition. Lastly, extensins and callose are not components of transfer cell walls of M. polymorpha, which deviates from studies on transfer cells in other plants. The difference in polymer localizations in transfer cell walls between generations is consistent with directional movement from gametophyte to sporophyte in this liverwort.


Asunto(s)
Pared Celular/química , Células Germinativas de las Plantas/química , Marchantia/química , Pared Celular/ultraestructura , Células Germinativas de las Plantas/ultraestructura , Microscopía Electrónica de Transmisión , Polímeros
2.
Planta ; 247(2): 393-404, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29027584

RESUMEN

MAIN CONCLUSION: Unlike most plant cell walls, the five consecutive walls laid down during spermatogenesis in the model fern Ceratopteris contain sparse cellulose, lack pectin and are enriched with callose and hemicelluloses. Seed-free plants like bryophytes and pteridophytes produce swimming male gametes for sexual reproduction. During spermatogenesis, unique walls are formed that are essential to the appropriate development and maturation of the motile gametes. Other than the detection of callose and general wall polysaccharides in scattered groups, little is known about the sequence of wall formation and the composition of these walls during sperm cell differentiation in plants that produce swimming sperm. Using histochemistry and immunogold localizations, we examined the distribution of callose, cellulose, mannan and xylan-containing hemicelluloses, and homogalacturonan (HG) pectins in the special walls deposited during spermatogenesis in Ceratopteris. Five walls are produced in sequence and each has a unique fate. The first wall (W1) contains callose and sparse xylan-containing hemicelluloses. Wall two (W2) is thin and composed of cellulose crosslinked by xylan-containing hemicelluloses. The third wall (W3) is thick and composed entirely of callose, and the fourth wall (W4) is built of cellulose heavily crosslinked by galactoxyloglucan hemicelluloses. Wall five (W5) is an arabinogalactan protein (AGP)-rich matrix in which the gamete changes shape and multiple flagella elongate. We detected no esterified or unesterified HG pectins in any of the walls laid down during spermatogenesis. To consider evolutionary modifications in cell walls associated with motile gametes, comparisons are presented with male gametophyte and spermatogenous cell walls across plant groups.


Asunto(s)
Helechos/química , Glucanos/metabolismo , Polisacáridos/metabolismo , Pared Celular/metabolismo , Pared Celular/ultraestructura , Helechos/metabolismo , Helechos/ultraestructura , Células Germinativas de las Plantas/química , Células Germinativas de las Plantas/metabolismo , Células Germinativas de las Plantas/ultraestructura , Pectinas/metabolismo
3.
Planta ; 243(4): 947-57, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26739842

RESUMEN

MAIN CONCLUSION: Both male and female gametes of archegoniates are highly specialized cells surrounded by an extraprotoplasmic matrix rich in AGPs, which are speculated to facilitate development and gamete fusion through Ca 2+) oscillations. An additional layer, the egg envelope, forms around the egg periphery, except at the fertilization pore, and contains arabinose-rich polymers that presumably impart flexibility for the rapidly growing zygote and embryo. The abundant AGPs and arabinan pectins associated with the eggs of C. richardii not only are integral to development, fertilization, and early embryogenesis, but also may be involved in desiccation tolerance important to the survival of the reproductive gametophyte. A defining feature of gametogenesis in archegoniates is the deposition of a special matrix outside of the plasmalemma of both egg and sperm cells that displaces the primary cell wall away from the protoplasm. It is within this matrix that gamete differentiation occurs. In leptosporangiate ferns, maturation of the egg cell involves the deposition of a second specialized wall, the so-called egg envelope that surrounds the cell except at the fertilization pore, a narrow site where gamete fusion takes place. We provide the first conclusive evidence of the macromolecular constituents in the unique structures surrounding fern egg cells before and after fertilization. To test the hypotheses that the egg extracellular matrix contains arabinogalactan proteins (AGPs) as does the sperm cell matrix, and that cell wall polysaccharides, especially pectins, are components of the egg envelope, we examined the expression patterns of AGPs and cell wall constituents during oogenesis in Ceratopteris richardii. Utilizing histochemical stains for callose, cellulose and AGPs coupled with immunogold localizations employing a suite of monoclonal antibodies to cell wall components (JIM13, JIM8, LM2, LM5, LM6, LM19, LM20 and anticallose), we demonstrate that AGPs, but not pectins, are abundant in the matrix around egg cells and degrading neck canal and ventral canal cells during archegonial development. A striking finding is that both AGPs and (1,5)-α-L-arabinan pectin epitopes are principle components of the egg envelope before and after fertilization, suggesting that they are important in both egg maturation and gamete fusion.


Asunto(s)
Mucoproteínas/análisis , Óvulo Vegetal/química , Pectinas/metabolismo , Pteridaceae/química , Anticuerpos Monoclonales/metabolismo , Pared Celular/química , Pared Celular/metabolismo , Epítopos , Matriz Extracelular/química , Matriz Extracelular/metabolismo , Glucanos/metabolismo , Microscopía Electrónica de Transmisión , Mucoproteínas/inmunología , Mucoproteínas/metabolismo , Óvulo Vegetal/metabolismo , Pectinas/análisis , Pectinas/inmunología , Proteínas de Plantas/análisis , Proteínas de Plantas/inmunología , Proteínas de Plantas/metabolismo , Polisacáridos/análisis , Polisacáridos/metabolismo , Pteridaceae/metabolismo
4.
Planta ; 241(3): 615-27, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25408505

RESUMEN

A striking feature of the liverwort Sphaerocarpos is that pairs of male and female spores remain united in permanent tetrads. To identify the nature of this phenomenon and to test the hypothesis that callose is involved, we examined spore wall development in Sphaerocarpos miche lii, with emphasis on the appearance, location and fate of callose vis-à-vis construction of the sculptoderm. All stages of sporogenesis were examined using differential interference contrast optics, and aniline blue fluorescence to locate callose. For precise localization, specimens were immunogold labeled with anti-callose antibody and observed in the transmission electron microscope. Callose plays a role in Sphaerocarpos spore wall development not described in any other plant, including other liverworts. A massive callose matrix forms outside of the sculptured sporocyte plasmalemma that predicts spore wall ornamentation. Consequently, layers of exine form across adjacent spores uniting them. Spore wall development occurs entirely within the callose and involves the production of six layers of prolamellae that give rise to single or stacked tripartite lamellae (TPL). Between spores, an anastomosing network of exine layers forms in lieu of intersporal septum development. As sporopollenin assembles on TPL, callose progressively disappears from the inside outward leaving layers of sporopollenin impregnated exine, the sculptoderm, overlying a thick fibrillar intine. This developmental mechanism provides a direct pathway from callose deposition to sculptured exine that does not involve the intermediary primexine found in pollen wall development. The resulting tetrad, encased in a single wall, provides a simple model for development of permanent dyads and tetrads in the earliest fossil plants.


Asunto(s)
Glucanos/fisiología , Hepatophyta/fisiología , Esporas/crecimiento & desarrollo
5.
Am J Bot ; 101(12): 2052-61, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25480702

RESUMEN

UNLABELLED: • PREMISE OF THE STUDY: Sperm cell differentiation in ferns involves the origin of an elaborate locomotory apparatus, including 70+ flagella, and the structural modification of every cellular component. Because arabinogalactan proteins (AGPs) are implicated in molecular signaling and in regulation of plant development, we speculated that these glycoproteins would be present during spermiogenesis in ferns.• METHODS: Using ß-glucosyl Yariv reagents that specifically bind to and inhibit AGPs and immunogold localizations with monoclonal antibodies JIM13, JIM8, and LM6, we examined the specific expression patterns of AGPs and inhibited their function during sperm cell development in the model fern Ceratopteris richardii.• KEY RESULTS: Developing sperm cells stained intensely with Yariv phenylglycosides, demonstrating the presence of AGPs. JIM13-AGP epitopes were widespread throughout development in the expanding extraprotoplasmic matrix (EPM) in which flagella elongate, cytoplasm is eliminated, and spherical spermatids become coiled. JIM8 and LM6 epitopes localized to the plasmalemma on growing flagella and on the rapidly changing sperm cell body. Spermatids treated with ß-glucosyl lacked an EPM and formed fewer, randomly arranged flagella.• CONCLUSIONS: We demonstrated that AGPs are abundant in the EPM and along the plasmalemma and that the three AGP epitopes have specific expression patterns during development. Coupled with inhibition studies, these results identify AGPs as critical to the formation of an extraprotoplasmic matrix and the consequent origin and development of flagella in an orderly and precise fashion around the cell. We speculate that AGPs may play additional roles as signaling molecules involved in cell shaping, cytoskeletal development, vesicle trafficking, and cytoplasmic elimination.


Asunto(s)
Helechos/metabolismo , Flagelos/metabolismo , Glicoproteínas/metabolismo , Mucoproteínas/metabolismo , Polen/metabolismo , Epítopos , Helechos/crecimiento & desarrollo , Glucósidos , Floroglucinol/análogos & derivados , Proteínas de Plantas/metabolismo , Polen/citología , Polen/crecimiento & desarrollo
6.
Bryophyt Divers Evol ; 43(1): 265-283, 2021 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-34532591

RESUMEN

The placenta of hornworts is unique among bryophytes in the restriction of transfer cells that are characterized by elaborate wall labyrinths to the gametophyte generation. During development, cells around the periphery of the sporophyte foot elongate, forming smooth-walled haustorial cells that interdigitate with gametophyte cells. Using immunogold labeling with 22 antibodies to diverse cell wall polymers, we examined compositional differences in the developmentally and morphologically distinct cell walls of gametophyte transfer cells and sporophyte haustorial cells in the placenta of Phaeoceros. As detected by Calcofluor White fluorescence, cellulose forms the cell wall scaffolding in cells on both sides of the placenta. Homogalacturonan (HG) and rhamnogalacturonan I (RG-I) pectins are abundant in both cell types, and haustrorial cells are further enriched in methyl-esterified HGs. The abundance of pectins in placental cell walls is consistent with the postulated roles of these polymers in cell wall porosity and in maintaining an acidic apoplastic pH favorable to solute transport. Xyloglucan hemicellulose, but not mannans or glucuronoxylans, are present in cell walls at the interface between the two generations with a lower density in gametophytic wall ingrowths. Arabinogalactan proteins (AGPs) are diverse along the plasmalemma of placental cells and are absent in surrounding cells in both generations. AGPs in placental cell walls may play a role in calcium binding and release associated with signal transduction as has been speculated for these glycoproteins in other plants. Callose is restricted to thin areas in cell walls of gametophyte transfer cells. In contrast to studies of transfer cells in other systems, no reaction to the JIM12 antibody against extensin was observed in Phaeoceros.

7.
Bio Protoc ; 7(19): e2570, 2017 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-34595253

RESUMEN

The only motile cells produced in land plants are male gametes (spermatozoids), which are reduced to non-flagellated cells in flowering plants and most gymnosperms. Although a coiled architecture is universal, the complexity of land plant flagellated cells varies from biflagellated in bryophytes to thousands of flagella per gametes in the seed plants Ginkgo and cycads. This wide diversity in number of flagella is associated with vast differences in cell size and shape. Scanning electron microscopy (SEM) has played an important role in characterizing the external form, including cell shape and arrangement of flagella, across the varied motile gametes of land plants. Because of the size and scarcity of released swimming sperm, it is difficult to concentrate them and prepare them for observation in the SEM. Here we detail an SEM preparation technique that yields good preservation of sperms cells across plant groups.

8.
Bio Protoc ; 7(19): e2448, 2017 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-34595246

RESUMEN

Motile male gametes (spermatozoids) of land plants are coiled and contain a modified and precisely organized complement of organelles that includes a locomotory apparatus with two to thousands of flagella. Each flagellum is generated from a basal body that originates de novo as a centriole in spermatogenous cell lineages. Much of what is known about the diversity of plant male gametes was derived from detailed transmission electron microscopic studies. Because the process of spermatogenesis results in complete transformation of the shape and organization of these cells, TEM studies have yielded a wealth of information on cellular differentiation. Because green algal progenitor groups contain centrioles and a variety of motile cells, land plant spermatozoids also provide a plethora of opportunities to examine the evolution and eventual loss of centrioles and locomotory apparatus during land colonization. Here we provide a brief overview of the studies and methodologies we have conducted over the past 20 years that have elucidated not only the structural diversity of these cells but also the development of microtubule organizing centers, the de novo origin of centrioles and the ontogeny of structurally complex motile cells.

9.
Bio Protoc ; 7(21): e2599, 2017 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-34595276

RESUMEN

Male gametes (spermatozoids) are the only motile cells produced during the life cycle of land plants. While absent from flowering and most cone-bearing plants, motile cells are found in less derived taxa, including bryophytes (mosses, liverworts and hornworts), pteridophytes (lycophytes and ferns) and some seed plants (Ginkgo and cycads). During development, these cells undergo profound changes that involve the production of a locomotory apparatus, unique microtubule (MT) arrays, and a series of special cell walls that are produced in sequence and are synchronized with cellular differentiation. Immunogold labeling in the transmission electron microscope (TEM) provides information on the exact location and potential function of macromolecules involved with this developmental process. Specifically, it is possible to localize epitopes to proteins that are associated with the cellular inclusions involved in MT production and function. Spermatogenesis in these plants is also ideal for examining the differential expression of carbohydrates and glycoproteins that comprise the extracellular matrixes associated with the dramatic architectural changes in gamete shape and locomotory apparatus development. Here we provide methodologies using monoclonal antibodies (MAbs) and immunogold labeling in the TEM to localize macromolecules that are integral to spermatozoid development.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA