Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 167(5): 1264-1280.e18, 2016 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-28084216

RESUMEN

Granulomas are immune cell aggregates formed in response to persistent inflammatory stimuli. Granuloma macrophage subsets are diverse and carry varying copy numbers of their genomic information. The molecular programs that control the differentiation of such macrophage populations in response to a chronic stimulus, though critical for disease outcome, have not been defined. Here, we delineate a macrophage differentiation pathway by which a persistent Toll-like receptor (TLR) 2 signal instructs polyploid macrophage fate by inducing replication stress and activating the DNA damage response. Polyploid granuloma-resident macrophages formed via modified cell divisions and mitotic defects and not, as previously thought, by cell-to-cell fusion. TLR2 signaling promoted macrophage polyploidy and suppressed genomic instability by regulating Myc and ATR. We propose that, in the presence of persistent inflammatory stimuli, pathways previously linked to oncogene-initiated carcinogenesis instruct a long-lived granuloma-resident macrophage differentiation program that regulates granulomatous tissue remodeling.


Asunto(s)
Daño del ADN , Granuloma/inmunología , Macrófagos/inmunología , Mycobacterium tuberculosis/inmunología , Animales , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Diferenciación Celular , Proliferación Celular , Humanos , Inflamación/inmunología , Lipoproteínas/inmunología , Ratones , Ratones Endogámicos C57BL , Mitosis , Proteínas Proto-Oncogénicas c-myc/metabolismo , Receptor Toll-Like 2
3.
Trends Genet ; 39(6): 505-519, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36894374

RESUMEN

ATRX (alpha-thalassemia mental retardation X-linked) is one of the most frequently mutated tumor suppressor genes in human cancers, especially in glioma, and recent findings indicate roles for ATRX in key molecular pathways, such as the regulation of chromatin state, gene expression, and DNA damage repair, placing ATRX as a central player in the maintenance of genome stability and function. This has led to new perspectives about the functional role of ATRX and its relationship with cancer. Here, we provide an overview of ATRX interactions and molecular functions and discuss the consequences of its impairment, including alternative lengthening of telomeres and therapeutic vulnerabilities that may be exploited in cancer cells.


Asunto(s)
Cromatina , Glioma , Humanos , Cromatina/genética , ADN Helicasas/genética , Proteína Nuclear Ligada al Cromosoma X/genética , Homeostasis del Telómero/genética , Glioma/genética , Telómero
4.
Genes Dev ; 29(7): 690-5, 2015 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-25838540

RESUMEN

In Saccharomyces cerevisiae, absence of the checkpoint kinase Mec1 (ATR) is viable upon mutations that increase the activity of the ribonucleotide reductase (RNR) complex. Whether this pathway is conserved in mammals remains unknown. Here we show that cells from mice carrying extra alleles of the RNR regulatory subunit RRM2 (Rrm2(TG)) present supraphysiological RNR activity and reduced chromosomal breakage at fragile sites. Moreover, increased Rrm2 gene dosage significantly extends the life span of ATR mutant mice. Our study reveals the first genetic condition in mammals that reduces fragile site expression and alleviates the severity of a progeroid disease by increasing RNR activity.


Asunto(s)
Rotura Cromosómica , Sitios Frágiles del Cromosoma/genética , Dosificación de Gen/genética , Longevidad/genética , Proteínas Serina-Treonina Quinasas/genética , Ribonucleósido Difosfato Reductasa/genética , Animales , Línea Celular , Supervivencia Celular , Células Cultivadas , Activación Enzimática/genética , Fibroblastos/citología , Humanos , Ratones , Nucleósidos/metabolismo , Análisis de Supervivencia
5.
EMBO Rep ; 20(1)2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30538118

RESUMEN

The G2/M checkpoint coordinates DNA replication with mitosis and thereby prevents chromosome segregation in the presence of unreplicated or damaged DNA Here, we show that the RNA-binding protein TIAR is essential for the G2/M checkpoint and that TIAR accumulates in nuclear foci in late G2 and prophase in cells suffering from replication stress. These foci, which we named G2/M transition granules (GMGs), occur at low levels in normally cycling cells and are strongly induced by replication stress. In addition to replication stress response proteins, GMGs contain factors involved in RNA metabolism as well as CDK1. Depletion of TIAR accelerates mitotic entry and leads to chromosomal instability in response to replication stress, in a manner that can be alleviated by the concomitant depletion of Cdc25B or inhibition of CDK1. Since TIAR retains CDK1 in GMGs and attenuates CDK1 activity, we propose that the assembly of GMGs may represent a so far unrecognized mechanism that contributes to the activation of the G2/M checkpoint in mammalian cells.


Asunto(s)
Proteína Quinasa CDC2/genética , Puntos de Control de la Fase G2 del Ciclo Celular/genética , Proteínas de Unión al ARN/genética , Fosfatasas cdc25/genética , Ciclo Celular/genética , Segregación Cromosómica/genética , Daño del ADN/genética , Replicación del ADN/genética , Células HeLa , Humanos , Mitosis/genética , Fosforilación
6.
Nucleic Acids Res ; 47(15): 8004-8018, 2019 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-31180492

RESUMEN

Common fragile sites (CFSs) are conserved genomic regions prone to break under conditions of replication stress (RS). Thus, CFSs are hotspots for rearrangements in cancer and contribute to its chromosomal instability. Here, we have performed a global analysis of proteins that recruit to CFSs upon mild RS to identify novel players in CFS stability. To this end, we performed Chromatin Immunoprecipitation (ChIP) of FANCD2, a protein that localizes specifically to CFSs in G2/M, coupled to mass spectrometry to acquire a CFS interactome. Our strategy was validated by the enrichment of many known regulators of CFS maintenance, including Fanconi Anemia, DNA repair and replication proteins. Among the proteins identified with unknown functions at CFSs was the chromatin remodeler ATRX. Here we demonstrate that ATRX forms foci at a fraction of CFSs upon RS, and that ATRX depletion increases the occurrence of chromosomal breaks, a phenotype further exacerbated under mild RS conditions. Accordingly, ATRX depletion increases the number of 53BP1 bodies and micronuclei, overall indicating that ATRX is required for CFS stability. Overall, our study provides the first proteomic characterization of CFSs as a valuable resource for the identification of novel regulators of CFS stability.


Asunto(s)
Sitios Frágiles del Cromosoma , Inestabilidad Genómica , Proteoma/metabolismo , Proteómica/métodos , Proteína Nuclear Ligada al Cromosoma X/metabolismo , Rotura Cromosómica , Reparación del ADN , Replicación del ADN/genética , Anemia de Fanconi/genética , Anemia de Fanconi/metabolismo , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/genética , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/metabolismo , Células HeLa , Humanos , Neoplasias/genética , Neoplasias/metabolismo , Proteoma/genética , Interferencia de ARN , Espectrometría de Masas en Tándem , Proteína Nuclear Ligada al Cromosoma X/genética
7.
Mol Cell ; 46(2): 125-35, 2012 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-22445484

RESUMEN

Brca1 is required for DNA repair by homologous recombination (HR) and normal embryonic development. Here we report that deletion of the DNA damage response factor 53BP1 overcomes embryonic lethality in Brca1-nullizygous mice and rescues HR deficiency, as measured by hypersensitivity to polyADP-ribose polymerase (PARP) inhibition. However, Brca1,53BP1 double-deficient cells are hypersensitive to DNA interstrand crosslinks (ICLs), indicating that BRCA1 has an additional role in DNA crosslink repair that is distinct from HR. Disruption of the nonhomologous end-joining (NHEJ) factor, Ku, promotes DNA repair in Brca1-deficient cells; however deletion of either Ku or 53BP1 exacerbates genomic instability in cells lacking FANCD2, a mediator of the Fanconi anemia pathway for ICL repair. BRCA1 therefore has two separate roles in ICL repair that can be modulated by manipulating NHEJ, whereas FANCD2 provides a key activity that cannot be bypassed by ablation of 53BP1 or Ku.


Asunto(s)
Proteína BRCA1/fisiología , Reparación del ADN , Recombinación Homóloga/fisiología , Animales , Antígenos Nucleares/fisiología , Proteína BRCA1/genética , Proteínas de Unión al ADN/fisiología , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/genética , Técnicas de Silenciamiento del Gen , Inestabilidad Genómica , Autoantígeno Ku , Ratones , Eliminación de Secuencia
8.
Biochim Biophys Acta Gen Subj ; 1862(3): 365-376, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29108956

RESUMEN

Ornithine decarboxylase (ODC) is a key enzyme in the biosynthesis of polyamines. ODC-antizyme inhibitors (AZINs) are homologous proteins of ODC, devoid of enzymatic activity but acting as regulators of polyamine levels. The last paralogue gene recently incorporated into the ODC/AZINs family is the murine Gm853, which is located in the same chromosome as AZIN2, and whose biochemical function is still unknown. By means of transfection assays of HEK293T cells with a plasmid containing the coding region of Gm853, we show here that unlike ODC, GM853 was a stable protein that was not able to decarboxylate l-ornithine or l-lysine and that did not act as an antizyme inhibitor. However, GM853 showed leucine decarboxylase activity, an enzymatic activity never described in animal cells, and by acting on l-leucine (Km=7.03×10-3M) it produced isopentylamine, an aliphatic monoamine with unknown function. The other physiological branched-chain amino acids, l-valine and l-isoleucine were poor substrates of the enzyme. Gm853 expression was mainly detected in the kidney, and as Odc, it was stimulated by testosterone. The conservation of Gm853 orthologues in different mammalian species, including primates, underlines the possible biological significance of this new enzyme. In this study, we describe for the first time a mammalian enzyme with leucine decarboxylase activity, therefore proposing that the gene Gm853 and its protein product should be named as leucine decarboxylase (Ldc, LDC).


Asunto(s)
Riñón/enzimología , Secuencia de Aminoácidos , Aminoácidos/metabolismo , Animales , Carboxiliasas , Inducción Enzimática/efectos de los fármacos , Femenino , Células HEK293 , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ornitina Descarboxilasa/metabolismo , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Especificidad por Sustrato , Propionato de Testosterona/farmacología , Transfección
9.
Transgenic Res ; 26(3): 429-434, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28105543

RESUMEN

The generation of genetically engineered mouse models (GEMMs), including knock-out (KO) and knock-in (KI) models, often requires genomic screening of many mouse ES cell (mESC) clones by Southern blot. The use of large targeting constructs facilitates the recombination of exogenous DNA in a specific genomic locus, but limits the detection of its correct genomic integration by standard PCR methods. Genomic Long Range PCR (LR-PCR), using primers adjacent to the homology arms, has been used as an alternative to radioactive-based Southern blot screenings. However, LR-PCRs are often difficult and render many false positive and false negative results. Here, we propose an alternative screening method based on the detection of a genetic modification at the mRNA level, which we successfully optimized in two mouse models. This screening method consists of a reverse-transcription PCR (RT-PCR) using primers that match exons flanking the targeting construct. The detection of the expected modification in this PCR product confirms the integration at the correct genomic location and shows that the mutant mRNA is expressed. This is a simple and sensitive strategy to screen locus-specific recombination of targeting constructs which can also be useful to screen KO and KI mutant mice or cell lines including those generated by CRISPR/Cas9.


Asunto(s)
Células Madre Embrionarias/fisiología , Recombinación Genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/métodos , Animales , Southern Blotting , Genes BRCA1 , Ratones Transgénicos
11.
Amino Acids ; 47(5): 1025-34, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25655388

RESUMEN

Agmatine (4-aminobutylguanidine), a dicationic molecule at physiological pH, exerts relevant modulatory actions at many different molecular target sites in mammalian cells, having been suggested that the administration of this compound may have therapeutic interest. Several plasma membrane transporters have been implicated in agmatine uptake by mammalian cells. Here we report that in kidney-derived COS-7 cell line, at physiological agmatine levels, the general polyamine transporter participates in the plasma membrane translocation of agmatine, with an apparent Km of 44 ± 7 µM and Vmax of 17.3 ± 3.3 nmol h(-1) mg(-1) protein, but that at elevated concentrations, agmatine can be also taken up by other transport systems. In the first case, the physiological polyamines (putrescine, spermidine and spermine), several diguanidines and bis(2-aminoimidazolines) and the polyamine transport inhibitor AMXT-1501 markedly decreased agmatine uptake. In cells transfected with any of the three ornithine decarboxylase antizymes (AZ1, AZ2 and AZ3), agmatine uptake was dramatically reduced. On the contrary, transfection with antizyme inhibitors (AZIN1 and AZIN2) markedly increased the transport of agmatine. Furthermore, whereas putrescine uptake was significantly decreased in cells transfected with ornithine decarboxylase (ODC), the accumulation of agmatine was stimulated, suggesting a trans-activating effect of intracellular putrescine on agmatine uptake. All these results indicate that ODC and its regulatory proteins (antizymes and antizyme inhibitors) may influence agmatine homeostasis in mammalian tissues.


Asunto(s)
Agmatina/metabolismo , Carboxiliasas/genética , Proteínas Portadoras/genética , Inhibidores de la Ornitina Descarboxilasa/farmacología , Ornitina Descarboxilasa/genética , Agmatina/antagonistas & inhibidores , Animales , Transporte Biológico/efectos de los fármacos , Células COS , Carboxiliasas/metabolismo , Proteínas Portadoras/metabolismo , Chlorocebus aethiops , Relación Dosis-Respuesta a Droga , Furanos/farmacología , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Guanidina/análogos & derivados , Guanidina/farmacología , Humanos , Concentración de Iones de Hidrógeno , Cinética , Ornitina Descarboxilasa/metabolismo , Putrescina/farmacología , Espermidina/farmacología , Espermina/farmacología , Transfección
12.
Biochim Biophys Acta ; 1830(11): 5157-65, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23872168

RESUMEN

BACKGROUND: Ornithine decarboxylase (ODC), the key enzyme in the polyamine biosynthetic pathway, is highly regulated by antizymes (AZs), small proteins that bind and inhibit ODC and increase its proteasomal degradation. Early studies delimited the putative AZ-binding element (AZBE) to the region 117-140 of ODC. The aim of the present work was to study the importance of certain residues of the region 110-142 that includes the AZBE region for the interaction between ODC and AZ1 and the ODC functionality. METHODS: Computational analysis of the protein sequences of the extended AZBE site of ODC and ODC paralogues from different eukaryotes was used to search for conserved residues. The influence of these residues on ODC functionality was studied by site directed mutagenesis, followed by different biochemical techniques. RESULTS: The results revealed that: a) there are five conserved residues in ODC and its paralogues: K115, A123, E138, L139 and K141; b) among these, L139 is the most critical one for the interaction with AZs, since its substitution decreases the affinity of the mutant protein towards AZs; c) all these conserved residues, with the exception of A123, are critical for ODC activity; d) substitutions of K115, E138 or L139 diminish the formation of ODC homodimers. CONCLUSIONS: These results reveal that four of the invariant residues of the AZBE region are strongly related to ODC functionality. GENERAL SIGNIFICANCE: This work helps to understand the interaction between ODC and AZ1, and describes various new residues involved in ODC activity, a key enzyme for cell growth and proliferation.


Asunto(s)
Ornitina Descarboxilasa/genética , Proteínas/genética , Secuencia de Aminoácidos , Sitios de Unión , Línea Celular , Análisis Mutacional de ADN/métodos , Células HEK293 , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Ornitina Descarboxilasa/metabolismo , Unión Proteica , Conformación Proteica , Proteínas/metabolismo
13.
Cell Cycle ; 23(1): 92-113, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38234243

RESUMEN

The Fragile Histidine Triad Diadenosine Triphosphatase (FHIT) gene is located in the Common Fragile Site FRA3B and encodes an enzyme that hydrolyzes the dinucleotide Ap3A. Although FHIT loss is one of the most frequent copy number alterations in cancer, its relevance for cancer initiation and progression remains unclear. FHIT is frequently lost in cancers from the digestive tract, which is compatible with being a cancer driver event in these tissues. However, FHIT loss could also be a passenger event due to the inherent fragility of the FRA3B locus. Moreover, the physiological relevance of FHIT enzymatic activity and the levels of Ap3A is largely unclear. We have conducted here a systematic pan-cancer analysis of FHIT status in connection with other mutations and phenotypic alterations, and we have critically discussed our findings in connection with the literature to provide an overall view of FHIT implications in cancer.


Asunto(s)
Ácido Anhídrido Hidrolasas , Proteínas de Neoplasias , Neoplasias , Humanos , Ácido Anhídrido Hidrolasas/genética , Sitios Frágiles del Cromosoma , Proteínas de Neoplasias/genética , Neoplasias/genética
14.
Blood Cancer J ; 14(1): 16, 2024 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-38253636

RESUMEN

Plk1-interacting checkpoint helicase (PICH) is a DNA translocase involved in resolving ultrafine anaphase DNA bridges and, therefore, is important to safeguard chromosome segregation and stability. PICH is overexpressed in various human cancers, particularly in lymphomas such as Burkitt lymphoma, which is caused by MYC translocations. To investigate the relevance of PICH in cancer development and progression, we have combined novel PICH-deficient mouse models with the Eµ-Myc transgenic mouse model, which recapitulates B-cell lymphoma development. We have observed that PICH deficiency delays the onset of MYC-induced lymphomas in Pich heterozygous females. Moreover, using a Pich conditional knockout mouse model, we have found that Pich deletion in adult mice improves the survival of Eµ-Myc transgenic mice. Notably, we show that Pich deletion in healthy adult mice is well tolerated, supporting PICH as a suitable target for anticancer therapies. Finally, we have corroborated these findings in two human Burkitt lymphoma cell lines and we have found that the death of cancer cells was accompanied by chromosomal instability. Based on these findings, we propose PICH as a potential therapeutic target for Burkitt lymphoma and for other cancers where PICH is overexpressed.


Asunto(s)
Linfoma de Burkitt , Adulto , Femenino , Animales , Humanos , Ratones , Linfoma de Burkitt/genética , Línea Celular , Inestabilidad Cromosómica , Modelos Animales de Enfermedad , Ratones Noqueados , Ratones Transgénicos , ADN
15.
J Cell Biochem ; 114(9): 1978-86, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23519605

RESUMEN

The role that the induction of cardiac ornithine decarboxylase (ODC), a key enzyme in polyamine biosynthesis, by beta-adrenergic agents may have in heart hypertrophy is a controversial issue. Besides, the signaling pathways related to cardiac ODC regulation have not been fully elucidated. Here we show that in Balb C mice the stimulation of cardiac ODC activity by adrenergic agents was mainly mediated by ß2 -adrenergic receptors, and that this induction was lower in the hypertrophic heart. Interestingly, this stimulation was abolished by the L-calcium channel antagonists verapamil and nifedipine. In addition, whereas the treatment with ß2 -adrenergic agents was associated to both the increases in ODC, ODC-antizyme inhibitor 1 (AZIN1), c-fos and c-myc mRNA levels and the phosphorylation of CREB and MAP kinases ERK1 and ERK2 (ERK1/2), the co-treatment with L-calcium channel blockers differentially prevented most of these changes. These results suggest that the stimulation of cardiac ODC by ß2 -adrenergic agents is associated with the activation of MAP kinases through the participation of L-calcium channels, and that by itself p-CREB does not appear to be sufficient for the transcriptional activation of ODC. In addition, post-translational mechanisms related with the induction of AZIN1 appear to be related to the increase of cardiac ODC activity.


Asunto(s)
Canales de Calcio/metabolismo , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Ornitina Descarboxilasa/metabolismo , Adrenérgicos/farmacología , Animales , Western Blotting , Canales de Calcio/genética , Masculino , Ratones , Ratones Endogámicos BALB C , Proteína Quinasa 1 Activada por Mitógenos/genética , Proteína Quinasa 3 Activada por Mitógenos/genética , Ornitina Descarboxilasa/genética , Fosforilación/efectos de los fármacos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
16.
Amino Acids ; 42(2-3): 539-47, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21814789

RESUMEN

Ornithine decarboxylase antizyme inhibitors, AZIN1 and AZIN2, are regulators and homologous proteins of ornithine decarboxylase (ODC), the rate limiting enzyme in the biosynthesis of polyamines. In this study, we have examined by means of real-time RT-PCR the relative abundance of mRNA of the three ODC paralogs in different rodent tissues, as well as in several cell lines derived from human tumors. With the exception of mouse and rat testes, ODC mRNA was the most expressed gene in all tissues examined (values higher than 60%). AZIN2 was more expressed than AZIN1 in testis, epididymis, brain, adrenal gland and lung, whereas the opposite was found in liver, kidney, heart, intestine and pancreas, as well as in all the cell lines examined. mRNA abundance of the three antizymes (AZ1, AZ2 and AZ3) that interact with ODC and antizyme inhibitors was also analyzed. AZ1 and AZ2 mRNA were ubiquitously expressed, AZ1 mRNA being more abundant than that of AZ2, although the ratio was dependent on the mouse tissue. In carcinoma-derived cells AZ1 was more expressed than AZ2, whereas in neuroblastoma-derived cells AZ2 mRNA was much more abundant than that of AZ1. AZ3 was expressed exclusively in rodent testes, where it was the most abundant of the three antizymes (~80%). This study is the first comparative-quantitative analysis on the expression of antizymes and antizyme inhibitors in different types of mammalian cells.


Asunto(s)
Inhibidores Enzimáticos/metabolismo , Proteínas/antagonistas & inhibidores , Animales , Línea Celular , Humanos , Masculino , Ratones , Proteínas/genética , ARN Mensajero/genética , Ratas , Ratas Sprague-Dawley , Reacción en Cadena en Tiempo Real de la Polimerasa
17.
Cancers (Basel) ; 14(7)2022 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-35406561

RESUMEN

High-grade glioma, including anaplastic astrocytoma and glioblastoma (GBM) patients, have a poor prognosis due to the lack of effective treatments. Therefore, the development of new therapeutic strategies to treat these gliomas is urgently required. Given that high-grade gliomas frequently harbor mutations in the SNF2 family chromatin remodeler ATRX, we performed a screen to identify FDA-approved drugs that are toxic to ATRX-deficient cells. Our findings reveal that multi-targeted receptor tyrosine kinase (RTK) and platelet-derived growth factor receptor (PDGFR) inhibitors cause higher cellular toxicity in high-grade glioma ATRX-deficient cells. Furthermore, we demonstrate that a combinatorial treatment of RTKi with temozolomide (TMZ)-the current standard of care treatment for GBM patients-causes pronounced toxicity in ATRX-deficient high-grade glioma cells. Our findings suggest that combinatorial treatments with TMZ and RTKi may increase the therapeutic window of opportunity in patients who suffer high-grade gliomas with ATRX mutations. Thus, we recommend incorporating the ATRX status into the analyses of clinical trials with RTKi and PDGFRi.

18.
Amino Acids ; 38(2): 603-11, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19956990

RESUMEN

Polyamines are small organic polycations essential for cell proliferation and survival. Antizymes (AZs) are small proteins regulated by polyamines that inhibit polyamine biosynthesis and uptake in mammalian cells. In addition, antizyme functions are also regulated by antizyme inhibitors, homologue proteins of ornithine decarboxylase lacking enzymatic activity. There are two antizyme inhibitors (AZIN), known as AZIN1 and AZIN2, that bind to AZs and negate their effects on polyamine metabolism. Here, we review different molecular and cellular properties of the novel AZIN2 with particular emphasis on the role that this protein may have in brain and testis physiology. Whereas AZIN1 is ubiquitously found in mammalian tissues, AZIN2 expression appears to be restricted to brain and testis. In transfected cells, AZIN2 is mainly located in the endoplasmic reticulum-Golgi intermediate compartment and in the cis-Golgi network. AZIN2 is a labile protein that is degraded by the proteasome by a ubiquitin-dependent mechanism. Regarding its physiological role, spatial and temporal analyses of AZIN2 expression in the mouse testis suggest that this protein may have a role in spermiogenesis.


Asunto(s)
Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Proteínas/antagonistas & inhibidores , Animales , Encéfalo/metabolismo , Carboxiliasas , Femenino , Humanos , Masculino , Ratones , Poliaminas/metabolismo , Transporte de Proteínas , Testículo/metabolismo
19.
Aging (Albany NY) ; 12(7): 5612-5624, 2020 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-32253367

RESUMEN

Replication Stress (RS) is a type of DNA damage generated at the replication fork, characterized by single-stranded DNA (ssDNA) accumulation, and which can be caused by a variety of factors. Previous studies have reported elevated RS levels in aged cells. In addition, mouse models with a deficient RS response show accelerated aging. However, the relevance of endogenous or physiological RS, compared to other sources of genomic instability, for the normal onset of aging is unknown. We have performed long term survival studies of transgenic mice with extra copies of the Chk1 and/or Rrm2 genes, which we previously showed extend the lifespan of a progeroid ATR-hypomorphic model suffering from high levels of RS. In contrast to their effect in the context of progeria, the lifespan of Chk1, Rrm2 and Chk1/Rrm2 transgenic mice was similar to WT littermates in physiological settings. Most mice studied died due to tumors -mainly lymphomas- irrespective of their genetic background. Interestingly, a higher but not statistically significant percentage of transgenic mice developed tumors compared to WT mice. Our results indicate that supraphysiological protection from RS does not extend lifespan, indicating that RS may not be a relevant source of genomic instability on the onset of normal aging.


Asunto(s)
Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/genética , Daño del ADN , Longevidad/genética , Ribonucleósido Difosfato Reductasa/genética , Animales , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/metabolismo , Replicación del ADN , Ratones , Ratones Transgénicos , Ribonucleósido Difosfato Reductasa/metabolismo
20.
J Cell Biochem ; 107(4): 732-40, 2009 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-19449338

RESUMEN

Ornithine decarboxylase (ODC) and the antizyme inhibitors (AZIN1 and AZIN2), regulatory proteins of polyamine levels, are antizyme-binding proteins. Although it is widely recognized that ODC is mainly a cytosolic enzyme, less is known about the subcellular distribution of AZIN1 and AZIN2. We found that these proteins, which share a high degree of homology in their amino acid sequences, presented differences in their subcellular location in transfected mammalian cells. Whereas ODC was mainly present in the cytosol, and AZIN1 was found predominantly in the nucleus, interestingly, AZIN2 was located in the ER-Golgi intermediate compartment (ERGIC) and in the cis-Golgi network, apparently not related to any known cell-sorting sequence. Our results rather suggest that the N-terminal region may be responsible for this particular location, since its deletion abrogated the incorporation of the mutated AZIN2 to the ERGIC complex and, on the other hand, the substitution of this sequence for the corresponding sequence in ODC, translocated ODC from cytosol to the ERGIC compartment. Furthermore, the coexpression of AZIN2 with any members of the antizyme family induced a shift of AZIN2 from the ERGIC to the cytosol. These findings underline the complexity of the AZs/AZINs regulatory system, supporting early evidence that relates these proteins with additional functions other than regulating polyamine homeostasis.


Asunto(s)
Proteínas/análisis , Secuencia de Aminoácidos , Animales , Células COS , Línea Celular , Núcleo Celular/química , Chlorocebus aethiops , Citoplasma/química , Retículo Endoplásmico , Inhibidores Enzimáticos , Aparato de Golgi , Humanos , Ratones , Ornitina Descarboxilasa/análisis , Transporte de Proteínas , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA