Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Front Mol Neurosci ; 17: 1423340, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38984196

RESUMEN

Alzheimer's disease (AD) affects the elderly population by causing memory impairments, cognitive and behavioral abnormalities. Currently, no curative treatments exist, emphasizing the need to explore therapeutic options that modify the progression of the disease. MicroRNAs (miRNAs), as non-coding RNAs, demonstrate multifaceted targeting potential and are known to be dysregulated in AD pathology. This mini review focuses on two promising miRNAs, hsa-miR-132 and hsa-miR-129, which consistently exhibit differential regulation in AD. By employing computational predictions and referencing published RNA sequencing dataset, we elucidate the intricate miRNA-mRNA target relationships associated with hsa-miR-132 and hsa-miR-129. Our review consistently identifies the downregulation of hsa-miR-132 and hsa-miR-129 in AD brains as a non-coding RNA molecular signature across studies conducted over the past 15 years in AD research.

2.
J Alzheimers Dis ; 98(2): 601-618, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38427484

RESUMEN

Background: Microglial dysfunction plays a causative role in Alzheimer's disease (AD) pathogenesis. Here we focus on a germline insertion/deletion variant mapping SIRPß1, a surface receptor that triggers amyloid-ß(Aß) phagocytosis via TYROBP. Objective: To analyze the impact of this copy-number variant in SIRPß1 expression and how it affects AD molecular etiology. Methods: Copy-number variant proxy rs2209313 was evaluated in GERALD and GR@ACE longitudinal series. Hippocampal specimens of genotyped AD patients were also examined. SIRPß1 isoform-specific phagocytosis assays were performed in HEK393T cells. Results: The insertion alters the SIRPß1 protein isoform landscape compromising its ability to bind oligomeric Aß and its affinity for TYROBP. SIRPß1 Dup/Dup patients with mild cognitive impairment show an increased cerebrospinal fluid t-Tau/Aß ratio (p = 0.018) and a higher risk to develop AD (OR = 1.678, p = 0.018). MRIs showed that Dup/Dup patients exhibited a worse initial response to AD. At the moment of diagnosis, all patients showed equivalent Mini-Mental State Examination scores. However, AD patients with the duplication had less hippocampal degeneration (p < 0.001) and fewer white matter hyperintensities. In contrast, longitudinal studies indicate that patients bearing the duplication allele show a slower cognitive decline (p = 0.013). Transcriptional analysis also shows that the SIRPß1 duplication allele correlates with higher TREM2 expression and an increased microglial activation. Conclusions: The SIRPß1 internal duplication has opposite effects over MCI-to-Dementia conversion risk and AD progression, affecting microglial response to Aß. Given the pharmacological approaches focused on the TREM2-TYROBP axis, we believe that SIRPß1 structural variant might be considered as a potential modulator of this causative pathway.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Receptores de Superficie Celular , Humanos , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/genética , Péptidos beta-Amiloides/metabolismo , Disfunción Cognitiva/diagnóstico por imagen , Disfunción Cognitiva/genética , Disfunción Cognitiva/metabolismo , Microglía/metabolismo , Fagocitosis , Receptores de Superficie Celular/metabolismo
3.
Cells ; 11(24)2022 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-36552756

RESUMEN

Genome-wide association studies (GWAS) have identified the PICALM (Phosphatidylinositol binding clathrin-assembly protein) gene as the most significant genetic susceptibility locus after APOE and BIN1. PICALM is a clathrin-adaptor protein that plays a critical role in clathrin-mediated endocytosis and autophagy. Since the effects of genetic variants of PICALM as AD-susceptibility loci have been confirmed by independent genetic studies in several distinct cohorts, there has been a number of in vitro and in vivo studies attempting to elucidate the underlying mechanism by which PICALM modulates AD risk. While differential modulation of APP processing and Aß transcytosis by PICALM has been reported, significant effects of PICALM modulation of tau pathology progression have also been evidenced in Alzheimer's disease models. In this review, we summarize the current knowledge about PICALM, its physiological functions, genetic variants, post-translational modifications and relevance to AD pathogenesis.


Asunto(s)
Enfermedad de Alzheimer , Proteínas de Ensamble de Clatrina Monoméricas , Humanos , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Clatrina/metabolismo , Sitios Genéticos , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Proteínas de Ensamble de Clatrina Monoméricas/genética , Proteínas de Ensamble de Clatrina Monoméricas/metabolismo
4.
Int J Alzheimers Dis ; 2021: 3064224, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34557314

RESUMEN

Alzheimer's disease is the most common cause of dementia worldwide, and longitudinal studies are crucial to find the factors affecting disease development. Here, we describe a novel initiative from southern Spain designed to contribute in the identification of the genetic component of the cognitive decline of Alzheimer's disease patients. The germline variant rs9320913 is a C>A substitution mapping within a gene desert. Although it has been previously associated to a higher educational achievement and increased fluid intelligence, its role on Alzheimer's disease risk and progression remains elusive. A total of 407 subjects were included in the study, comprising 153 Alzheimer disease patients and 254 healthy controls. We have explored the rs9320913 contribution to both Alzheimer disease risk and progression according to the Mini-Mental State Exams. We found that rs9320913 maps within a central nervous system lincRNA AL589740.1. eQTL results show that rs9320913 correlated with the brain-frontal cortex (beta = -0.15, p value = 0.057) and brain-spinal cord (beta of -0.23, p value = 0.037). We did not find rs9320913 to be associated to AD risk, although AA patients seemed to exhibit a less pronounced Mini-Mental State Exam score decline.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA