Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Mar Drugs ; 21(12)2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-38132922

RESUMEN

In this work, we extracted chitosan from marine amphipods associated with aquaculture facilities and tested its use in crop protection. The obtained chitosan was 2.5 ± 0.3% of initial ground amphipod dry weight. The chemical nature of chitosan from amphipod extracts was confirmed via Raman scattering spectroscopy and Fourier transform infrared spectroscopy (FTIR). This chitosan showed an 85.7-84.3% deacetylation degree. Chitosan from biofouling amphipods at 1 mg·mL-1 virtually arrested conidia germination (ca. sixfold reduction from controls) of the banana wilt pathogenic fungus Fusarium oxysporum f. sp cubense Tropical Race 4 (FocTR4). This concentration reduced (ca. twofold) the conidia germination of the biocontrol fungus Pochonia chlamydosporia (Pc123). Chitosan from amphipods at low concentrations (0.01 mg·mL-1) still reduced FocTR4 germination but did not affect Pc123. This is the first time that chitosan is obtained from biofouling amphipods. This new chitosan valorizes aquaculture residues and has potential for biomanaging the diseases of food security crops such as bananas.


Asunto(s)
Anfípodos , Quitosano , Fusarium , Musa , Animales , Musa/microbiología , Quitosano/farmacología , Enfermedades de las Plantas/prevención & control , Enfermedades de las Plantas/microbiología , Hongos
2.
BMC Genomics ; 23(1): 101, 2022 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-35123406

RESUMEN

BACKGROUND: Pochonia chlamydosporia is an endophytic fungus used for nematode biocontrol that employs its cellular and molecular machinery to degrade the nematode egg-shell. Chitosanases, among other enzymes, are involved in this process. In this study, we improve the genome sequence assembly of P. chlamydosporia 123, by utilizing long Pacific Biosciences (PacBio) sequence reads. Combining this improved genome assembly with previous RNA-seq data revealed alternative isoforms of a chitosanase in the presence of chitosan. This study could open new insights into understanding fungal resistance to chitosan and root-knot nematode (RKN) egg infection processes. RESULTS: The P. chlamydosporia 123 genome sequence assembly has been updated using long-read PacBio sequencing and now includes 12,810 predicted protein-coding genes. Compared with the previous assembly based on short reads, there are 701 newly annotated genes, and 69 previous genes are now split. Eight of the new genes were differentially expressed in fungus interactions with Meloidogyne javanica eggs or chitosan. A survey of the RNA-seq data revealed alternative splicing in the csn3 gene that encodes a chitosanase, with four putative splicing variants: csn3_v1, csn3_v2, csn3_v3 and csn3_v4. When P. chlamydosporia is treated with 0.1 mg·mL- 1 chitosan for 4 days, csn3 is expressed 10-fold compared with untreated controls. Furthermore, the relative abundances of each of the four transcripts are different in chitosan treatment compared with controls. In controls, the abundances of each transcript are nil, 32, 55, and 12% for isoforms csn3_v1, csn3_v2, csn3_v3 and csn3_v4 respectively. Conversely, in chitosan-treated P. chlamydosporia, the abundances are respectively 80, 15%, 2-3%, 2-3%. Since isoform csn3_v1 is expressed with chitosan only, the putatively encoded enzyme is probably induced and likely important for chitosan degradation. CONCLUSIONS: Alternative splicing events have been discovered and described in the chitosanase 3 encoding gene from P. chlamydosporia 123. Gene csn3 takes part in RKN parasitism process and chitosan enhances its expression. The isoform csn3_v1 would be related to the degradation of this polymer in bulk form, while other isoforms may be related to the degradation of chitosan in the nematode egg-shell.


Asunto(s)
Quitosano , Hypocreales , Tylenchoidea , Animales , Glicósido Hidrolasas , Hypocreales/genética
3.
Environ Microbiol ; 23(9): 4980-4997, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33496078

RESUMEN

Climate change makes plant-parasitic nematodes (PPN) an increasing threat to commercial crops. PPN can be managed sustainably by the biocontrol fungus Pochonia chlamydosporia (Pc). Chitosan generated from chitin deacetylation enhances PPN parasitism by Pc. In this work, we investigate the molecular mechanisms of Pc for chitosan resistance and root-knot nematode (RKN) parasitism, using transcriptomics. Chitosan and RKN modify the expression of Pc genes, mainly those involved in oxidation-reduction processes. Both agents significantly modify the expression of genes associated to 113 GO terms and 180 Pc genes. Genes encoding putative glycoproteins (Pc adhesives) to nematode eggshell, as well as genes involved in redox, carbohydrate and lipid metabolism trigger the response to chitosan. We identify genes expressed in both the parasitic and endophytic phases of the Pc lifecycle; these include proteases, chitosanases and transcription factors. Using the Pathogen-Host Interaction database (PHI-base), our previous RNA-seq data and RT-PCR of Pc colonizing banana we have investigated genes expressed both in the parasitic and endophytic phases of Pc lifecycle.


Asunto(s)
Quitosano , Hypocreales , Nematodos , Tylenchoidea , Animales , Hypocreales/genética , Transcriptoma , Tylenchoidea/genética
4.
Int J Mol Sci ; 22(6)2021 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-33808705

RESUMEN

Fungal LysM effector proteins can dampen plant host-defence responses, protecting hyphae from plant chitinases, but little is known on these effectors from nonpathogenic fungal endophytes. We found four putative LysM effectors in the genome of the endophytic nematophagous fungus Pochonia chlamydosporia (Pc123). All four genes encoding putative LysM effectors are expressed constitutively by the fungus. Additionally, the gene encoding Lys1-the smallest one-is the most expressed in banana roots colonised by the fungus. Pc123 Lys1, 2 and 4 display high homology with those of other strains of the fungus and phylogenetically close entomopathogenic fungi. However, Pc123 Lys3 displays low homology with other fungi, but some similarities are found in saprophytes. This suggests evolutionary divergence in Pc123 LysM effectors. Additionally, molecular docking shows that the NAcGl binding sites of Pc123 Lys 2, 3 and 4 are adjacent to an alpha helix. Putative LysM effectors from fungal endophytes, such as Pc123, differ from those of plant pathogenic fungi. LysM motifs from endophytic fungi show clear conservation of cysteines in Positions 13, 51 and 63, unlike those of plant pathogens. LysM effectors could therefore be associated with the lifestyle of a fungus and give us a clue of how organisms could behave in different environments.


Asunto(s)
Proteínas Fúngicas/metabolismo , Hongos/fisiología , Dominios y Motivos de Interacción de Proteínas , Secuencia de Aminoácidos , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Hongos/clasificación , Regulación Fúngica de la Expresión Génica , Interacciones Huésped-Patógeno , Hifa , Hypocreales/fisiología , Modelos Moleculares , Plantas/metabolismo , Plantas/microbiología , Conformación Proteica , Relación Estructura-Actividad
5.
Int J Mol Sci ; 20(2)2019 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-30650540

RESUMEN

Chitosan is a versatile compound with multiple biotechnological applications. This polymer inhibits clinically important human fungal pathogens under the same carbon and nitrogen status as in blood. Chitosan permeabilises their high-fluidity plasma membrane and increases production of intracellular oxygen species (ROS). Conversely, chitosan is compatible with mammalian cell lines as well as with biocontrol fungi (BCF). BCF resistant to chitosan have low-fluidity membranes and high glucan/chitin ratios in their cell walls. Recent studies illustrate molecular and physiological basis of chitosan-root interactions. Chitosan induces auxin accumulation in Arabidopsis roots. This polymer causes overexpression of tryptophan-dependent auxin biosynthesis pathway. It also blocks auxin translocation in roots. Chitosan is a plant defense modulator. Endophytes and fungal pathogens evade plant immunity converting chitin into chitosan. LysM effectors shield chitin and protect fungal cell walls from plant chitinases. These enzymes together with fungal chitin deacetylases, chitosanases and effectors play determinant roles during fungal colonization of plants. This review describes chitosan mode of action (cell and gene targets) in fungi and plants. This knowledge will help to develop chitosan for agrobiotechnological and medical applications.


Asunto(s)
Quitosano/metabolismo , Hongos/metabolismo , Plantas/metabolismo , Antibacterianos/farmacología , Biotecnología , Quitosano/química , Quitosano/farmacología , Hongos/genética , Desarrollo de la Planta/efectos de los fármacos , Plantas/efectos de los fármacos
6.
J Basic Microbiol ; 56(10): 1059-1070, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27259000

RESUMEN

Chitosan antifungal activity has been reported for both filamentous fungi and yeast. Previous studies have shown fungal plasma membrane as main chitosan target. However, the role of the fungal cell wall (CW) in their response to chitosan is unknown. We show that cell wall regeneration in Neurospora crassa (chitosan sensitive) protoplasts protects them from chitosan damage. Caspofungin, a ß-1,3-glucan synthase inhibitor, showed a synergistic antifungal effect with chitosan for N. crassa but not for Pochonia chlamydosporia, a biocontrol fungus resistant to chitosan. Chitosan significantly repressed N. crassa genes involved in ß-1,3-glucan synthesis (fks) and elongation (gel-1) but the chitin synthase gene (chs-1) did not present changes in its expression. N. crassa cell wall deletion strains related to ß-1,3-glucan elongation (Δgel-1 and Δgel-2) were more sensitive to chitosan than wild type (wt). On the contrary, chitin synthase deletion strain (Δchs-1) showed the same sensitivity to chitosan than wt. The mycelium of P. chlamydosporia showed a higher (ca. twofold) ß-1,3-glucan/chitin ratio than that of N. crassa. Taken together, our results indicate that cell wall composition plays an important role on -sensitivity of filamentous fungi to chitosan.


Asunto(s)
Antifúngicos/farmacología , Ascomicetos/efectos de los fármacos , Pared Celular/metabolismo , Quitosano/farmacología , Equinocandinas/farmacología , Lipopéptidos/farmacología , Neurospora crassa/metabolismo , Caspofungina , Quitina Sintasa/biosíntesis , Farmacorresistencia Fúngica , Sinergismo Farmacológico , Micelio/efectos de los fármacos , Neurospora crassa/efectos de los fármacos , beta-Glucanos/metabolismo
7.
J Basic Microbiol ; 56(7): 792-800, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27213758

RESUMEN

The effect of chitosan on growth of Trichoderma spp., a cosmopolitan genus widely exploited for their biocontrol properties was evaluated. Based on genotypic (ITS of 18S rDNA) characters, four isolates of Trichoderma were identified as T. pseudokoningii FLM16, T. citrinoviride FLM17, T. harzianum EZG47, and T. koningiopsis VSL185. Chitosan reduces radial growth of Trichoderma isolates in concentration-wise manner. T. koningiopsis VSL185 was the most chitosan tolerant isolate in all culture media amended with chitosan (0.5-2.0 mg ml(-1) ). Minimal Inhibitory Concentration (MIC) and Minimal Fungicidal Concentration (MFC) were determined showing that T. koningiopsis VSL185 displays higher chitosan tolerance with MIC value >2000 µg ml(-1) while for other Trichoderma isolates MIC values were around 10 µg ml(-1) . Finally, free fatty acid composition reveals that T. koningiopsis VSL185, chitosan tolerant isolate, displays lower linolenic acid (C18:3) content than chitosan sensitive Trichoderma isolates. Our findings suggest that low membrane fluidity is associated with chitosan tolerance in Trichoderma spp.


Asunto(s)
Membrana Celular/metabolismo , Quelantes/farmacología , Quitosano/farmacología , Fluidez de la Membrana/fisiología , Trichoderma/crecimiento & desarrollo , Ácido alfa-Linolénico/metabolismo , ADN Intergénico/genética , Hifa/crecimiento & desarrollo , Pruebas de Sensibilidad Microbiana , ARN Ribosómico 18S/genética , Trichoderma/efectos de los fármacos , Trichoderma/metabolismo
8.
J Plant Res ; 128(4): 665-78, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25982739

RESUMEN

Plant crop yields are negatively conditioned by a large set of biotic and abiotic factors. An alternative to mitigate these adverse effects is the use of fungal biological control agents and endophytes. The egg-parasitic fungus Pochonia chlamydosporia has been traditionally studied because of its potential as a biological control agent of plant-parasitic nematodes. This fungus can also act as an endophyte in monocot and dicot plants, and has been shown to promote plant growth in different agronomic crops. An Affymetrix 22K Barley GeneChip was used in this work to analyze the barley root transcriptomic response to P. chlamydosporia root colonization. Functional gene ontology (GO) and gene set enrichment analyses showed that genes involved in stress response were enriched in the barley transcriptome under endophytism. An 87.5% of the probesets identified within the abiotic stress response group encoded heat shock proteins. Additionally, we found in our transcriptomic analysis an up-regulation of genes implicated in the biosynthesis of plant hormones, such as auxin, ethylene and jasmonic acid. Along with these, we detected induction of brassinosteroid insensitive 1-associated receptor kinase 1 (BR1) and other genes related to effector-triggered immunity (ETI) and pattern-triggered immunity (PTI). Our study supports at the molecular level the growth-promoting effect observed in plants endophytically colonized by P. chlamydosporia, which opens the door to further studies addressing the capacity of this fungus to mitigate the negative effects of biotic and abiotic factors on plant crops.


Asunto(s)
Ascomicetos/fisiología , Hordeum/microbiología , Nematodos/microbiología , Estrés Fisiológico/fisiología , Animales , Regulación de la Expresión Génica de las Plantas/fisiología , Hordeum/genética , Hordeum/metabolismo , Hordeum/parasitología , Interacciones Huésped-Patógeno , Raíces de Plantas/metabolismo , Raíces de Plantas/microbiología , Transducción de Señal
9.
Fungal Genet Biol ; 65: 69-80, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24530791

RESUMEN

Pochonia chlamydosporia is a worldwide-distributed soil fungus with a great capacity to infect and destroy the eggs and kill females of plant-parasitic nematodes. Additionally, it has the ability to colonize endophytically roots of economically-important crop plants, thereby promoting their growth and eliciting plant defenses. This multitrophic behavior makes P. chlamydosporia a potentially useful tool for sustainable agriculture approaches. We sequenced and assembled ∼41 Mb of P. chlamydosporia genomic DNA and predicted 12,122 gene models, of which many were homologous to genes of fungal pathogens of invertebrates and fungal plant pathogens. Predicted genes (65%) were functionally annotated according to Gene Ontology, and 16% of them found to share homology with genes in the Pathogen Host Interactions (PHI) database. The genome of this fungus is highly enriched in genes encoding hydrolytic enzymes, such as proteases, glycoside hydrolases and carbohydrate esterases. We used RNA-Seq technology in order to identify the genes expressed during endophytic behavior of P. chlamydosporia when colonizing barley roots. Functional annotation of these genes showed that hydrolytic enzymes and transporters are expressed during endophytism. This structural and functional analysis of the P. chlamydosporia genome provides a starting point for understanding the molecular mechanisms involved in the multitrophic lifestyle of this fungus. The genomic information provided here should also prove useful for enhancing the capabilities of this fungus as a biocontrol agent of plant-parasitic nematodes and as a plant growth-promoting organism.


Asunto(s)
Ascomicetos/fisiología , Genoma Fúngico , Nematodos/microbiología , Animales , Ascomicetos/genética , Ascomicetos/patogenicidad , Femenino , Regulación Fúngica de la Expresión Génica , Ontología de Genes , Hordeum/microbiología , Interacciones Huésped-Patógeno , Óvulo/microbiología , Filogenia , Raíces de Plantas/microbiología , Análisis de Secuencia de ADN , Transducción de Señal , Transcriptoma
11.
Insects ; 14(6)2023 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-37367336

RESUMEN

Alien species must adapt to new biogeographical regions to acclimatise and survive. We consider a species to have become invasive if it establishes negative interactions after acclimatisation. Xylella fastidiosa Wells, Raju et al., 1986 (XF) represents Italy's and Europe's most recent biological invasion. In Apulia (southern Italy), the XF-encountered Philaenus spumarius L. 1758 (Spittlebugs, Hemiptera: Auchenorrhyncha) can acquire and transmit the bacterium to Olea europaea L., 1753. The management of XF invasion involves various transmission control means, including inundative biological control using Zelus renardii (ZR) Kolenati, 1856 (Hemiptera: Reduviidae). ZR is an alien stenophagous predator of Xylella vectors, recently entered from the Nearctic and acclimated in Europe. Zelus spp. can secrete semiochemicals during interactions with conspecifics and prey, including volatile organic compounds (VOCs) that elicit conspecific defence behavioural responses. Our study describes ZR Brindley's glands, present in males and females of ZR, which can produce semiochemicals, eliciting conspecific behavioural responses. We scrutinised ZR secretion alone or interacting with P. spumarius. The ZR volatilome includes 2-methyl-propanoic acid, 2-methyl-butanoic acid, and 3-methyl-1-butanol, which are consistent for Z. renardii alone. Olfactometric tests show that these three VOCs, individually tested, generate an avoidance (alarm) response in Z. renardii. 3-Methyl-1-butanol elicited the highest significant repellence, followed by 2-methyl-butanoic and 2-methyl-propanoic acids. The concentrations of the VOCs of ZR decrease during the interaction with P. spumarius. We discuss the potential effects of VOC secretions on the interaction of Z. renardii with P. spumarius.

12.
Microorganisms ; 11(2)2023 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-36838405

RESUMEN

This study focuses on interacting with insects and their ectosymbiont (lato sensu) microorganisms for environmentally safe plant production and protection. Some cases help compare ectosymbiont microorganisms that are insect-borne, -driven, or -spread relevant to endosymbionts' behaviour. Ectosymbiotic bacteria can interact with insects by allowing them to improve the value of their pabula. In addition, some bacteria are essential for creating ecological niches that can host the development of pests. Insect-borne plant pathogens include bacteria, viruses, and fungi. These pathogens interact with their vectors to enhance reciprocal fitness. Knowing vector-phoront interaction could considerably increase chances for outbreak management, notably when sustained by quarantine vector ectosymbiont pathogens, such as the actual Xylella fastidiosa Mediterranean invasion episode. Insect pathogenic viruses have a close evolutionary relationship with their hosts, also being highly specific and obligate parasites. Sixteen virus families have been reported to infect insects and may be involved in the biological control of specific pests, including some economic weevils. Insects and fungi are among the most widespread organisms in nature and interact with each other, establishing symbiotic relationships ranging from mutualism to antagonism. The associations can influence the extent to which interacting organisms can exert their effects on plants and the proper management practices. Sustainable pest management also relies on entomopathogenic fungi; research on these species starts from their isolation from insect carcasses, followed by identification using conventional light or electron microscopy techniques. Thanks to the development of omics sciences, it is possible to identify entomopathogenic fungi with evolutionary histories that are less-shared with the target insect and can be proposed as pest antagonists. Many interesting omics can help detect the presence of entomopathogens in different natural matrices, such as soil or plants. The same techniques will help localize ectosymbionts, localization of recesses, or specialized morphological adaptation, greatly supporting the robust interpretation of the symbiont role. The manipulation and modulation of ectosymbionts could be a more promising way to counteract pests and borne pathogens, mitigating the impact of formulates and reducing food insecurity due to the lesser impact of direct damage and diseases. The promise has a preventive intent for more manageable and broader implications for pests, comparing what we can obtain using simpler, less-specific techniques and a less comprehensive approach to Integrated Pest Management (IPM).

13.
BMC Genomics ; 13: 267, 2012 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-22727066

RESUMEN

BACKGROUND: Chitosan oligosaccharide (COS), a deacetylated derivative of chitin, is an abundant, and renewable natural polymer. COS has higher antimicrobial properties than chitosan and is presumed to act by disrupting/permeabilizing the cell membranes of bacteria, yeast and fungi. COS is relatively non-toxic to mammals. By identifying the molecular and genetic targets of COS, we hope to gain a better understanding of the antifungal mode of action of COS. RESULTS: Three different chemogenomic fitness assays, haploinsufficiency (HIP), homozygous deletion (HOP), and multicopy suppression (MSP) profiling were combined with a transcriptomic analysis to gain insight in to the mode of action and mechanisms of resistance to chitosan oligosaccharides. The fitness assays identified 39 yeast deletion strains sensitive to COS and 21 suppressors of COS sensitivity. The genes identified are involved in processes such as RNA biology (transcription, translation and regulatory mechanisms), membrane functions (e.g. signalling, transport and targeting), membrane structural components, cell division, and proteasome processes. The transcriptomes of control wild type and 5 suppressor strains overexpressing ARL1, BCK2, ERG24, MSG5, or RBA50, were analyzed in the presence and absence of COS. Some of the up-regulated transcripts in the suppressor overexpressing strains exposed to COS included genes involved in transcription, cell cycle, stress response and the Ras signal transduction pathway. Down-regulated transcripts included those encoding protein folding components and respiratory chain proteins. The COS-induced transcriptional response is distinct from previously described environmental stress responses (i.e. thermal, salt, osmotic and oxidative stress) and pre-treatment with these well characterized environmental stressors provided little or any resistance to COS. CONCLUSIONS: Overexpression of the ARL1 gene, a member of the Ras superfamily that regulates membrane trafficking, provides protection against COS-induced cell membrane permeability and damage. We found that the ARL1 COS-resistant over-expression strain was as sensitive to Amphotericin B, Fluconazole and Terbinafine as the wild type cells and that when COS and Fluconazole are used in combination they act in a synergistic fashion. The gene targets of COS identified in this study indicate that COS's mechanism of action is different from other commonly studied fungicides that target membranes, suggesting that COS may be an effective fungicide for drug-resistant fungal pathogens.


Asunto(s)
Quitosano/farmacología , Saccharomyces cerevisiae/efectos de los fármacos , Anfotericina B/farmacología , Antifúngicos/farmacología , Permeabilidad de la Membrana Celular/efectos de los fármacos , Farmacorresistencia Fúngica/efectos de los fármacos , Fluconazol/farmacología , Perfilación de la Expresión Génica , Regulación Fúngica de la Expresión Génica/efectos de los fármacos , Haploinsuficiencia/efectos de los fármacos , Proteínas de Unión al GTP Monoméricas/genética , Proteínas de Unión al GTP Monoméricas/metabolismo , Naftalenos/farmacología , Estrés Oxidativo/efectos de los fármacos , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Terbinafina , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo
14.
Can J Microbiol ; 58(7): 815-27, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22690687

RESUMEN

The fungi Pochonia chlamydosporia and Pochonia rubescens are parasites of nematode eggs and thus are biocontrol agents of nematodes. Proteolytic enzymes such as the S8 proteases VCP1 and P32, secreted during the pathogenesis of nematode eggs, are major virulence factors in these fungi. Recently, expression of these enzymes and of SCP1, a new putative S10 carboxypeptidase, was detected during endophytic colonization of barley roots by these fungi. In our study, we cloned the genomic and mRNA sequences encoding P32 from P. rubescens and SCP1 from P. chlamydosporia. P32 showed a high homology with the serine proteases Pr1A from the entomopathogenic fungus Metarhizium anisopliae and VCP1 from P. chlamydosporia (86% and 76% identity, respectively). However, the catalytic pocket of P32 showed differences in the amino acids of the substrate-recognition sites compared with the catalytic pockets of Pr1A and VCP1 proteases. Phylogenetic analysis of P32 suggests a common ancestor with protease Pr1A. SCP1 displays the characteristic features of a member of the S10 family of serine proteases. Phylogenetic comparisons show that SCP1 and other carboxypeptidases from filamentous fungi have an origin different from that of yeast vacuolar serine carboxypeptidases. Understanding protease genes from nematophagous fungi is crucial for enhancing the biocontrol potential of these organisms.


Asunto(s)
Carboxipeptidasas/química , Carboxipeptidasas/genética , Hypocreales , Filogenia , Serina Proteasas/química , Serina Proteasas/genética , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Clonación Molecular , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Hypocreales/clasificación , Hypocreales/enzimología , Hypocreales/genética , Modelos Moleculares , Datos de Secuencia Molecular , Alineación de Secuencia
15.
Front Fungal Biol ; 3: 980341, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-37746197

RESUMEN

Plants are exposed to large number of threats caused by herbivores and pathogens which cause important losses on crops. Plant pathogens such as nematodes can cause severe damage and losses in food security crops worldwide. Chemical pesticides were extendedly used for nematode management. However, due to their adverse effects on human health and the environment, they are now facing strong limitations by regulatory organisations such as EFSA (European Food Safety Authority). Therefore, there is an urgent need for alternative and efficient control measures, such as biological control agents or bio-based plant protection compounds. In this scenario, chitosan, a non-toxic polymer obtained from seafood waste mainly, is becoming increasingly important. Chitosan is the N-deacetylated form of chitin. Chitosan is effective in the control of plant pests and diseases. It also induces plants defence mechanisms. Chitosan is also compatible with some biocontrol microorganisms mainly entomopathogenic and nematophagous fungi. Some of them are antagonists of nematode pests of plants and animals. The nematophagous biocontrol fungus Pochonia chlamydosporia has been widely studied for sustainable management of nematodes affecting economically important crops and for its capability to grow with chitosan as only nutrient source. This fungus infects nematode eggs using hyphal tips and appressoria. Pochonia chlamydosporia also colonizes plant roots endophytically, stimulating plant defences by induction of salicylic and jasmonic acid biosynthesis and favours plant growth and development. Therefore, the combined use of chitosan and nematophagous fungi could be a novel strategy for the biological control of nematodes and other root pathogens of food security crops.

16.
J Fungi (Basel) ; 8(8)2022 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-36012831

RESUMEN

The entomopathogenic fungus Beauveria bassiana (Bb) is used to control the red palm weevil (RPW) Rhyncophorus ferrugineus (Oliver). Beuveria bassiana can infect and kill all developmental stages of RPW. We found that a solid formulate of B. bassiana isolate 203 (Bb203; CBS 121097), obtained from naturally infected RPW adults, repels RPW females. Fungi, and entomopathogens in particular, can produce volatile organic compounds (VOCs). VOCs from Bb203 were analyzed using gas chromatography-mass spectrometry (GC-MS). GC-MS identified more than 15 VOCs in B. bassiana not present in uninoculated (control) formulate. Both ethenyl benzene and benzothiazole B. bassiana VOCs can repel RPW females. Our findings suggest that B. bassiana and its VOCs can be used for sustainable management of RPW. They could act complementarily to avoid RPW infestation in palms.

17.
Appl Microbiol Biotechnol ; 87(6): 2237-45, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20532757

RESUMEN

Antifungal activity of chitosan on plant pathogenic fungi has been widely studied, but little is known about the effect of chitosan on fungal biocontrol agents. In this work, we characterize the increase of conidiation induced by chitosan in fungal pathogens of invertebrates (FPI). Chitosan increased conidiation of FPI, including Beauveria bassiana, widely used as mycoinsecticide, and did not affect conidia viability or pathogenicity. Increased conidiation induced by chitosan is shown to be concentration dependent and is not associated to growth inhibition as observed for the mycoparasitic fungus Trichoderma harzianum. Real-time reverse transcription polymerase chain reaction was used to study transcript levels of two genes involved in conidiation in B. bassiana, the regulatory G protein signaling gene Bbrgs1 and the hydrophobin gene hyd1, at different chitosan concentrations. Higher levels of Bbrgs1 and hyd1 transcripts were detected on chitosan-amended media. No correlation with chitosan concentration was observed for expression of Bbrgs1 unlike hyd1. Bbrgs1 deletion mutant Bbrgs1 showed that chitosan-induced conidiation is independent of Bbrgs1, suggesting an alternative mechanism controlling conidiation in B. bassiana. Our data supports that sporulation increases by chitosan, with spores retaining their viability and pathogenicity, which makes chitosan a suitable compound to increase conidia production in fungi with applications in fungal biotechnology.


Asunto(s)
Quitosano/farmacología , Hongos/efectos de los fármacos , Hongos/crecimiento & desarrollo , Esporas Fúngicas/efectos de los fármacos , Esporas Fúngicas/crecimiento & desarrollo , Animales , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Hongos/genética , Hongos/patogenicidad , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Regulación Fúngica de la Expresión Génica/efectos de los fármacos , Invertebrados/microbiología , Control Biológico de Vectores , Esporas Fúngicas/genética , Esporas Fúngicas/patogenicidad
18.
Insects ; 11(8)2020 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-32781701

RESUMEN

Fungal Volatile Organic Compounds (VOCs) repel banana black weevil (BW), Cosmopolites sordidus (Germar, 1824), the key-pest of banana [Musa sp. (Linnaeus, 1753)]. The entomopathogens Beauveria bassiana (Bb1TS11) and Metarhizium robertsii (Mr4TS04) were isolated from banana plantation soils using an insect bait. Bb1TS11 and Mr4TS04 were pathogenic to BW adults. Bb1TS11, Bb203 (from infected palm weevils), Mr4TS04 and the nematophagous fungus Pochonia clamydosporia (Pc123), were tested for VOCs production. VOCs were identified by Gas Chromatography/Mass Spectrometry-Solid-Phase Micro Extraction (GC/MS-SPME). GC/MS-SPME identified a total of 97 VOCs in all strains tested. Seven VOCs (styrene, benzothiazole, camphor, borneol, 1,3-dimethoxy-benzene, 1-octen-3-ol and 3-cyclohepten-1-one) were selected for their abundance or previous record as insect repellents. BW-starved adults in the dark showed the highest mobility to banana corm in olfactometry bioassays. 3-cyclohepten-1-one (C7), produced by all fungal strains, is the best BW repellent (p < 0.05), followed by 1,3-dimethoxy-benzene (C5). The rest of the VOCs have a milder repellency to BW. Styrene (C1) and benzothiazole (C2) (known to repel palm weevil) block the attraction of banana corm and BW pheromone to BW adults in bioassays. Therefore, VOCs from biocontrol fungi can be used in future studies for the biomanagement of BW in the field.

19.
Front Plant Sci ; 11: 572087, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33250907

RESUMEN

In this work, we use electrophysiological and metabolomic tools to determine the role of chitosan as plant defense elicitor in soil for preventing or manage root pests and diseases sustainably. Root exudates include a wide variety of molecules that plants and root microbiota use to communicate in the rhizosphere. Tomato plants were treated with chitosan. Root exudates from tomato plants were analyzed at 3, 10, 20, and 30 days after planting (dap). We found, using high performance liquid chromatography (HPLC) and excitation emission matrix (EEM) fluorescence, that chitosan induces plant hormones, lipid signaling and defense compounds in tomato root exudates, including phenolics. High doses of chitosan induce membrane depolarization and affect membrane integrity. 1H-NMR showed the dynamic of exudation, detecting the largest number of signals in 20 dap root exudates. Root exudates from plants irrigated with chitosan inhibit ca. twofold growth kinetics of the tomato root parasitic fungus Fusarium oxysporum f. sp. radicis-lycopersici. and reduced ca. 1.5-fold egg hatching of the root-knot nematode Meloidogyne javanica.

20.
Electrophoresis ; 30(17): 2996-3005, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19676091

RESUMEN

The entomopathogenic fungi Beauveria bassiana, Lecanicillium dimorphum and L. cf. psalliotae can survive and colonize living palm tissue as endophytes. The molecular interaction between these biocontrol agent fungi and the date palm Phoenix dactylifera L. was investigated using proteomic techniques. Field date palms inoculated with these fungi were analyzed 15 and 30 days after inoculation in two independent bioassays. In vitro date palms were also inoculated with B. bassiana or L. cf. psalliotae. Qualitative and quantitative differences in protein accumulation between controls (not inoculated) and inoculated palms were found using 2-DE analysis, and some of these responsive proteins could be identified using MALDI/TOF-TOF. Proteins involved in plant defence or stress response were induced in P. dactylifera leaves as a response to endophytic colonization by entomopathogenic fungi in field date palms. Proteins related with photosynthesis and energy metabolism were also affected by entomopathogenic fungi colonization. A myosin heavy chain-like protein was accumulated in in vitro palms inoculated with these fungi. This suggests that endophytic colonization by these entomopathogenic fungi modulates plant defence responses and energy metabolism in field date palms and possibly modulates the expression of cell division-related proteins in in vitro palms at proteomic level.


Asunto(s)
Arecaceae/metabolismo , Arecaceae/microbiología , Beauveria/crecimiento & desarrollo , Hypocreales/crecimiento & desarrollo , Proteínas de Plantas/metabolismo , Proteómica/métodos , Simbiosis/fisiología , Electroforesis en Gel Bidimensional , Metabolismo Energético , Fotosíntesis , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA