RESUMEN
We have previously reported the fabrication of a polycaprolactone and hydroxyapatite composite scaffold incorporating growth factors to be used for bone regeneration. Two growth factors were incorporated employing a multilayered coating based on polydopamine (PDA). In particular, Bone morphogenetic protein-2 (BMP-2) was bound onto the inner PDA layer while vascular endothelial growth factor (VEGF) was immobilized onto the outer one. Herein, the in vitro release of both growth factors is evaluated. A fastest VEGF delivery followed by a slow and more sustained release of BMP-2 was demonstrated, thus fitting the needs for bone tissue engineering applications. Due to the relevance of the crosstalk between bone-promoting and vessel-forming cells during bone healing, the functionalized scaffolds are further assessed on a co-culture setup of human mesenchymal stem cells and human endothelial progenitor cells. Osteogenic and angiogenic gene expression analysis indicates a synergistic effect between the growth factor-loaded scaffolds and the co-culture conditions. Taken together, these results indicate that the developed scaffolds hold great potential as an efficient platform for bone-tissue applications.
Asunto(s)
Proteína Morfogenética Ósea 2/metabolismo , Células Progenitoras Endoteliales/citología , Indoles/química , Células Madre Mesenquimatosas/citología , Neovascularización Fisiológica , Osteogénesis , Polímeros/química , Factor A de Crecimiento Endotelial Vascular/metabolismo , Células Cultivadas , Técnicas de Cocultivo , Células Progenitoras Endoteliales/metabolismo , Humanos , Células Madre Mesenquimatosas/metabolismo , Ingeniería de Tejidos/métodos , Andamios del Tejido/químicaRESUMEN
The supercritical carbon dioxide (scCO2 ) synthesis of non-reduced graphene oxide (GO) aerogels from dispersions of GO in ethanol is here reported as a low-cost, efficient, and environmentally friendly process. The preparation is carried out under the mild conditions of 333â K and 20â MPa. The high aspect ratio of the used GO sheets (ca.â 30â µm lateral dimensions) allowed the preparation of aerogel monoliths by simultaneous scCO2 gelation and drying. Solid-state characterization results indicate that a thermally-stable mesoporous non-reduced GO aerogel was obtained by using the supercritical procedure, keeping most of the surface oxygenated groups on the GO sheets, thus, facilitating further functionalization. Moreover, the monoliths have a very low density, high specific surface area, and excellent mechanical integrity; characteristics which rival those of most light-weight reduced graphene aerogels reported in the literature.
RESUMEN
The development of new biomaterials for musculoskeletal tissue repair is currently an important branch in biomedicine research. The approach presented here is centered around the development of a prototypic synthetic glycerogel scaffold for bone regeneration, which simultaneously features therapeutic activity. The main novelty of this work lies in the combination of an open meso and macroporous nanocrystalline cellulose (NCC)-based glycerogel with a fully biocompatible microporous bioMOF system (CaSyr-1) composed of calcium ions and syringic acid. The bioMOF framework is further impregnated with a third bioactive component, i.e., ibuprofen (ibu), to generate a multifold bioactive system. The integrated CaSyr-1(ibu) serves as a reservoir for bioactive compounds delivery, while the NCC scaffold is the proposed matrix for cell ingrowth, proliferation and differentiation. The measured drug delivery profiles, studied in a phosphate-buffered saline solution at 310 K, indicate that the bioactive components are released concurrently with bioMOF dissolution after ca. 30 min following a pseudo-first-order kinetic model. Furthermore, according to the semi-empirical Korsmeyer-Peppas kinetic model, this release is governed by a case-II mechanism, suggesting that the molecular transport is influenced by the relaxation of the NCC matrix. Preliminary in vitro results denote that the initial high concentration of glycerol in the NCC scaffold can be toxic in direct contact with human osteoblasts (HObs). However, when the excess of glycerol is diluted in the system (after the second day of the experiment), the direct and indirect assays confirm full biocompatibility and suitability for HOb proliferation.
RESUMEN
A series of porous metalloporphyrin frameworks prepared from the 5,10,15,20-tetra(4-pyridyl)porphyrin (H2TPyP) linker and four metal complexes, M(hfac)2 M = Cu(II), Zn(II), Co(II), and Ni(II) (hfac: 1,1,1,5,5,5-hexafluoroacetylacetonate), were obtained using supercritical CO2 (scCO2) as a solvent. All the materials, named generically as [M-TPyP] n , formed porous metal-organic frameworks (MOFs), with surface areas of â¼450 m2 g-1. All MOFs were formed through the coordination of the metal to the exocyclic pyridine moieties in the porphyrin linker. For Cu(II), Zn(II), and Co(II), incomplete metal coordination of the inner pyrrole ring throughout the structure was observed, giving place to MOFs with substitutional defects and leading to a certain level of disorder and limited crystallinity. These samples, prepared using scCO2, were precipitated as nano- to micrometric powders. Separately, a layering technique from a mixture of organic solvents was used to crystallize high-quality crystals of the Co(II) based MOF, obtained with the formula [{Co(hfac)2}2H2TPyP] n . The crystal structure of this MOF was elucidated by single-crystal synchrotron X-ray diffraction. The Zn(II)-based MOF was selected as a potential photodynamic therapy drug in the SKBR-3 tumoral cell line showing outstanding performance. This MOF resulted to be nontoxic, but after 15 min of irradiation at 630 nm, using either 1 or 5 µM concentration of the product, almost 70% of tumor cells died after 72 h.
RESUMEN
RATIONALE: The [3+3]-cyclocondensation reactions of chiral (1R,2R)-1,2-diaminocyclohexane with aromatic or aliphatic bis-aldehydes to form trianglimine macrocycles were reported a decade ago and were believed to proceed through a stepwise mechanistic pathway; however, no intermediates were ever isolated or detected and characterized. METHODS: We investigated the mechanism of the [3+3]-cyclocondensation reaction using a selection of dialdehyde starting materials using real-time electrospray ionization time-of-flight mass spectrometry. RESULTS: We observed up to a maximum of 16 reaction intermediates along the reaction pathway, more than for any other multistep reaction reported. We also probed the dynamic reversibility of trianglimines using selected small dynamic combinatorial libraries and showed that trianglimine formation is indeed fully reversible. CONCLUSIONS: This study represents a significant contribution towards understanding the mechanism of trianglimine formation and its potential applicability can be extended to include other cascade reactions.
Asunto(s)
Compuestos Macrocíclicos/química , Espectrometría de Masa por Ionización de Electrospray/métodos , Aldehídos/química , Ciclización , Iones/química , Resonancia Magnética Nuclear BiomolecularRESUMEN
Composites involving reduced graphene oxide (rGO) aerogels supporting Pt/TiO2 nanoparticles were fabricated using a one-pot supercritical CO2 gelling and drying method, followed by mild reduction under a N2 atmosphere. Electron microscopy images and N2 adsorption/desorption isotherms indicate the formation of 3D monolithic aerogels with a meso/macroporous morphology. A comprehensive evaluation of the synthesized photocatalyst was carried out with a focus on the target application: the photocatalytic production of H2 from methanol in aqueous media. The reaction conditions (water/methanol ratio, catalyst concentration), together with the aerogel composition (Pt/TiO2/rGO ratio) and architecture (size of the aerogel pieces), were the factors that varied in optimizing the process. These experimental parameters influenced the diffusion of the reactants/products inside the aerogel, the permeability of the porous structure, and the light-harvesting properties, all determined in this study towards maximizing H2 production. Using methanol as the sacrificial agent, the measured H2 production rate for the optimized system (18,800 µmolH2h-1gNPs-1) was remarkably higher than the values found in the literature for similar Pt/TiO2/rGO catalysts and reaction media (2000-10,000 µmolH2h-1gNPs-1).
RESUMEN
This article reports the synthesis of an aerogel involving reduced graphene oxide (rGO) and polyethylenimine (PEI), and describes its potential application as an effective sorbent to treat Hg(II) contaminated water. The rGO/PEI sorbent was synthetized using a supercritical CO2 method. N2 physisorption, electron microscopy, and elemental mapping were applied to visualize the meso/macroporous morphology formed by the supercritical drying. The advantages of the synthetized materials are highlighted with respect to the larger exposed GO surface for the PEI grafting of aerogels vs. cryogels, homogeneous distribution of the nitrogenated amino groups in the former and, finally, high Hg(II) sorption capacities. Sorption tests were performed starting from water solutions involving traces of Hg(II). Even though, the designed sorbent was able to eliminate almost all of the metal from the water phase, attaining in very short periods of time residual Hg(II) values as low as 3.5 µg L-1, which is close to the legal limits of drinking water of 1-2 µg L-1. rGO/PEI exhibited a remarkably high value for the maximum sorption capacity of Hg(II), in the order of 219 mg g-1. All of these factors indicate that the designed rGO/PEI aerogel can be considered as a promising candidate to treat Hg(II) contaminated wastewater.
RESUMEN
For bone tissue engineering applications, scaffolds that mimic the porous structure of the extracellular matrix are highly desirable. Herein, we employ a PCL/HA-based scaffold with a double-scaled architecture of small pores coupled to larger ones. To improve the osteoinductivity of the scaffold, we incorporate two different growth factors via polydopamine (PDA) coating. As a first step, we identify the maximum amount of PDA that can be deposited onto the scaffold. Next, to allow for the deposition of a second PDA layer which, in turn, will allow to increase the loading of growth factors, we incorporate a dithiol connecting layer. The thiol groups covalently react with the first PDA coating through Michael addition while also allowing for the incorporation of a second PDA layer. We load the first and second PDA layers with bone morphogenic protein-2 (BMP2) and vascular endothelial growth factor (VEGF), respectively, and evaluate the osteogenic potential of the functionalised scaffold by cell viability, alkaline phosphatase activity and the expression of three different osteogenesis-related genes of pre-seeded human mesenchymal stem cells. Through these studies, we demonstrate that the osteogenic activity of the scaffolds loaded with both BMP2 and VEGF is greater than scaffolds loaded only with BMP2. Importantly, the osteoinductivity is higher when the scaffolds are loaded with BMP2 and VEGF in two different PDA layers. Taken together, these results indicate that the as-prepared scaffolds could be a useful construct for bone-tissue applications.
Asunto(s)
Andamios del Tejido , Factor A de Crecimiento Endotelial Vascular , Diferenciación Celular , Humanos , Indoles , Osteogénesis , Polímeros , Ingeniería de TejidosRESUMEN
We present a novel method for processing bacterial cellulose/graphene oxide (BC/GO) aerogels with multifunctional properties. The addition of a small amount of dimethyl sulfoxide (DMSO) to the aqueous dispersion of the nanomaterials during the gelification process affected the water freezing temperature of the system and thereby affecting the porous structure of the aerogel obtained after liophilization. The possibility to obtain small and elongated pore with axial orientation allowed a significant improvement of the structural stability of the aerogels. Moreover, the aerogels reduction by thermal treatment with ammonia gas induced crosslinking between the different nanophases, thus given an incremental factor for the mechanical performance of the aerogels under harsh conditions. The resulting aerogels also showed significant improvements in terms of thermal stability and electrical conductivity. These multifunctional BC/GO aerogels present high potential as sustainable and ecological alternative materials for lightweight packaging, filters for atmosphere and water treatment, or energy applications.
Asunto(s)
Celulosa/análogos & derivados , Grafito/química , Amoníaco/química , Reactivos de Enlaces Cruzados/química , Dimetilsulfóxido/química , Conductividad Eléctrica , Geles/química , Calor , Oxidación-Reducción , PorosidadRESUMEN
A comprehensive study of 14 hybrid aerogels of different composition with applications in drug delivery has been carried out. The overall objective was to modulate the release behavior of drug-impregnated aerogels, from an almost instantaneous release to a semi-retarded delivery prolonged during several hours, through internal surface functionalization. The designed hybrid aerogels were composed of silica and gelatin and functionalized with either phenyl, long (16) hydrocarbon chain or methyl moiety. As model systems, three class II active agents (pKa<5.5), ibuprofen, ketoprofen and triflusal, were chosen to impregnate the aerogels. The work relied on the use of supercritical fluid technology for both the synthesis and functionalization of the hybrid aerogels, as well as for the impregnation with an active agent using supercritical CO2 as a solvent. For the impregnated aerogels, in vitro release profiles were recorded under gastric and intestinal pH-conditions using HPLC techniques. The release behavior observed for the three studied drugs was explained considering the measured dissolution profiles of the crystalline drugs, the aerogel composition and its functionalization. Such features are considered of great interest to tailor the bioavailability of drugs with low water solubility.
Asunto(s)
Portadores de Fármacos/síntesis química , Sistemas de Liberación de Medicamentos/métodos , Geles/síntesis química , Cromatografía Líquida de Alta Presión/métodos , Portadores de Fármacos/administración & dosificación , Geles/administración & dosificación , Ibuprofeno/administración & dosificación , Ibuprofeno/síntesis química , Solubilidad , Difracción de Rayos X/métodosRESUMEN
The synthesis of Schiff base macrocycles was achieved using supercritical CO(2) as both solvent and acid catalyst.