Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sensors (Basel) ; 23(10)2023 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-37430601

RESUMEN

In the realm of computer vision, semantic segmentation is the task of recognizing objects in images at the pixel level. This is done by performing a classification of each pixel. The task is complex and requires sophisticated skills and knowledge about the context to identify objects' boundaries. The importance of semantic segmentation in many domains is undisputed. In medical diagnostics, it simplifies the early detection of pathologies, thus mitigating the possible consequences. In this work, we provide a review of the literature on deep ensemble learning models for polyp segmentation and develop new ensembles based on convolutional neural networks and transformers. The development of an effective ensemble entails ensuring diversity between its components. To this end, we combined different models (HarDNet-MSEG, Polyp-PVT, and HSNet) trained with different data augmentation techniques, optimization methods, and learning rates, which we experimentally demonstrate to be useful to form a better ensemble. Most importantly, we introduce a new method to obtain the segmentation mask by averaging intermediate masks after the sigmoid layer. In our extensive experimental evaluation, the average performance of the proposed ensembles over five prominent datasets beat any other solution that we know of. Furthermore, the ensembles also performed better than the state-of-the-art on two of the five datasets, when individually considered, without having been specifically trained for them.


Asunto(s)
Suministros de Energía Eléctrica , Conocimiento , Aprendizaje , Redes Neurales de la Computación , Semántica
2.
J Imaging ; 9(2)2023 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-36826954

RESUMEN

Skin detection involves identifying skin and non-skin areas in a digital image and is commonly used in various applications, such as analyzing hand gestures, tracking body parts, and facial recognition. The process of distinguishing between skin and non-skin regions in a digital image is widely used in a variety of applications, ranging from hand-gesture analysis to body-part tracking to facial recognition. Skin detection is a challenging problem that has received a lot of attention from experts and proposals from the research community in the context of intelligent systems, but the lack of common benchmarks and unified testing protocols has hampered fairness among approaches. Comparisons are very difficult. Recently, the success of deep neural networks has had a major impact on the field of image segmentation detection, resulting in various successful models to date. In this work, we survey the most recent research in this field and propose fair comparisons between approaches, using several different datasets. The main contributions of this work are (i) a comprehensive review of the literature on approaches to skin-color detection and a comparison of approaches that may help researchers and practitioners choose the best method for their application; (ii) a comprehensive list of datasets that report ground truth for skin detection; and (iii) a testing protocol for evaluating and comparing different skin-detection approaches. Moreover, we propose an ensemble of convolutional neural networks and transformers that obtains a state-of-the-art performance.

3.
Procedia Comput Sci ; 207: 573-582, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36275370

RESUMEN

The aim of this work is to investigate possible relationships between air quality and the spread of the pandemic. We evaluate the performance of machine learning techniques in predicting new cases. Specifically, we describe a cross-correlation analysis on daily COVID-19 cases and environmental factors, such as temperature, relative humidity, and atmospheric pollutants. Our analysis confirms a significant association of some environmental parameters with the spread of the virus. This suggests that machine learning models trained using environmental parameters might provide accurate predictions about the number of infected cases. Our empirical evaluation shows that temperature and ozone are negatively correlated with confirmed cases (therefore, the higher the values of these parameters, the lower the number of infected cases), whereas atmospheric particulate matter and nitrogen dioxide are positively correlated. We developed and compared three different predictive models to test whether these technologies can be useful to estimate the evolution of the pandemic.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA