Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
1.
EMBO J ; 42(18): e111807, 2023 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-37606072

RESUMEN

Cilia are important cellular organelles for signaling and motility and are constructed via intraflagellar transport (IFT). RabL2 is a small GTPase that localizes to the basal body of cilia via an interaction with the centriolar protein CEP19 before downstream association with the IFT machinery, which is followed by initiation of IFT. We reconstituted and purified RabL2 with CEP19 or IFT proteins to show that a reconstituted pentameric IFT complex containing IFT81/74 enhances the GTP hydrolysis rate of RabL2. The binding site on IFT81/74 that promotes GTP hydrolysis in RabL2 was mapped to a 70-amino-acid-long coiled-coil region of IFT81/74. We present structural models for RabL2-containing IFT complexes that we validate in vitro and in cellulo and demonstrate that Chlamydomonas IFT81/74 enhances GTP hydrolysis of human RabL2, suggesting an ancient evolutionarily conserved activity. Our results provide an architectural understanding of how RabL2 is incorporated into the IFT complex and a molecular rationale for why RabL2 dissociates from anterograde IFT trains soon after departure from the ciliary base.


Asunto(s)
Proteínas Activadoras de GTPasa , Transducción de Señal , Humanos , Proteínas Activadoras de GTPasa/genética , Transporte Biológico , Aminoácidos , Guanosina Trifosfato , Proteínas Musculares , Proteínas del Citoesqueleto
2.
EMBO J ; 41(24): e112440, 2022 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-36354106

RESUMEN

Cilia are ubiquitous eukaryotic organelles impotant for cellular motility, signaling, and sensory reception. Cilium formation requires intraflagellar transport of structural and signaling components and involves 22 different proteins organized into intraflagellar transport (IFT) complexes IFT-A and IFT-B that are transported by molecular motors. The IFT-B complex constitutes the backbone of polymeric IFT trains carrying cargo between the cilium and the cell body. Currently, high-resolution structures are only available for smaller IFT-B subcomplexes leaving > 50% structurally uncharacterized. Here, we used Alphafold to structurally model the 15-subunit IFT-B complex. The model was validated using cross-linking/mass-spectrometry data on reconstituted IFT-B complexes, X-ray scattering in solution, diffraction from crystals as well as site-directed mutagenesis and protein-binding assays. The IFT-B structure reveals an elongated and highly flexible complex consistent with cryo-electron tomographic reconstructions of IFT trains. The IFT-B complex organizes into IFT-B1 and IFT-B2 parts with binding sites for ciliary cargo and the inactive IFT dynein motor, respectively. Interestingly, our results are consistent with two different binding sites for IFT81/74 on IFT88/70/52/46 suggesting the possibility of different structural architectures for the IFT-B1 complex. Our data present a structural framework to understand IFT-B complex assembly, function, and ciliopathy variants.


Asunto(s)
Cilios , Dineínas , Cilios/metabolismo , Dineínas/metabolismo , Transporte Biológico , Sitios de Unión , Modelos Estructurales , Flagelos/metabolismo
3.
EMBO Rep ; 25(7): 3040-3063, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38849673

RESUMEN

Polarized vesicular trafficking directs specific receptors and ion channels to cilia, but the underlying mechanisms are poorly understood. Here we describe a role for DLG1, a core component of the Scribble polarity complex, in regulating ciliary protein trafficking in kidney epithelial cells. Conditional knockout of Dlg1 in mouse kidney causes ciliary elongation and cystogenesis, and cell-based proximity labeling proteomics and fluorescence microscopy show alterations in the ciliary proteome upon loss of DLG1. Specifically, the retromer-associated protein SDCCAG3, IFT20, and polycystin-2 (PC2) are reduced in the cilia of DLG1-deficient cells compared to control cells. This phenotype is recapitulated in vivo and rescuable by re-expression of wild-type DLG1, but not a Congenital Anomalies of the Kidney and Urinary Tract (CAKUT)-associated DLG1 variant, p.T489R. Finally, biochemical approaches and Alpha Fold modelling suggest that SDCCAG3 and IFT20 form a complex that associates, at least indirectly, with DLG1. Our work identifies a key role for DLG1 in regulating ciliary protein composition and suggests that ciliary dysfunction of the p.T489R DLG1 variant may contribute to CAKUT.


Asunto(s)
Proteínas Portadoras , Cilios , Homólogo 1 de la Proteína Discs Large , Canales Catiónicos TRPP , Animales , Cilios/metabolismo , Canales Catiónicos TRPP/metabolismo , Canales Catiónicos TRPP/genética , Ratones , Homólogo 1 de la Proteína Discs Large/metabolismo , Proteínas Portadoras/metabolismo , Proteínas Portadoras/genética , Humanos , Transporte de Proteínas , Ratones Noqueados , Riñón/metabolismo , Células Epiteliales/metabolismo , Unión Proteica , Reflujo Vesicoureteral/metabolismo , Reflujo Vesicoureteral/genética , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Anomalías Urogenitales
4.
Bioessays ; 46(9): e2300222, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38991980

RESUMEN

Cilia are slender, micrometer-long organelles present on the surface of eukaryotic cells. They function in signaling and locomotion and are constructed by intraflagellar transport (IFT). The assembly of IFT complexes into so-called IFT trains to initiate ciliary entry at the base of the cilium remains a matter of debate. Here, we use structural modeling to provide an architectural framework for how RabL2 is anchored at the ciliary base via CEP19 before being handed over to IFT trains for ciliary entry. Our models suggest that the N-terminal domain of CEP43 forms a homo-dimer to anchor at the subdistal appendages of cilia through a direct interaction with CEP350. A long linker region separates the N-terminal domain of CEP43 from the C-terminal domain, which captures CEP19 above the subdistal appendages and close to the distal appendages. Furthermore, we present a structural model for how RabL2-CEP19 associates with the IFT-B complex, providing insight into how RabL2 is handed over from CEP19 to the IFT complex. Interestingly, RabL2 association with the IFT-B complex appears to induce a significant conformational change in the IFT complex via a kink in the coiled-coils of the IFT81/74 proteins, which may prime the IFT machinery for entry into cilia.


Asunto(s)
Cilios , Proteínas de Unión al GTP rab , Animales , Humanos , Ratones , Cilios/metabolismo , Modelos Moleculares , Complejos Multiproteicos/metabolismo , Complejos Multiproteicos/química , Proteínas de Unión al GTP rab/química , Proteínas de Unión al GTP rab/metabolismo
5.
EMBO J ; 40(15): e107807, 2021 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-34191293

RESUMEN

Eukaryotic cells employ three SMC (structural maintenance of chromosomes) complexes to control DNA folding and topology. The Smc5/6 complex plays roles in DNA repair and in preventing the accumulation of deleterious DNA junctions. To elucidate how specific features of Smc5/6 govern these functions, we reconstituted the yeast holo-complex. We found that the Nse5/6 sub-complex strongly inhibited the Smc5/6 ATPase by preventing productive ATP binding. This inhibition was relieved by plasmid DNA binding but not by short linear DNA, while opposing effects were observed without Nse5/6. We uncovered two binding sites for Nse5/6 on Smc5/6, based on an Nse5/6 crystal structure and cross-linking mass spectrometry data. One binding site is located at the Smc5/6 arms and one at the heads, the latter likely exerting inhibitory effects on ATP hydrolysis. Cysteine cross-linking demonstrated that the interaction with Nse5/6 anchored the ATPase domains in a non-productive state, which was destabilized by ATP and DNA. Under similar conditions, the Nse4/3/1 module detached from the ATPase. Altogether, we show how DNA substrate selection is modulated by direct inhibition of the Smc5/6 ATPase by Nse5/6.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteínas Cromosómicas no Histona/química , Proteínas Cromosómicas no Histona/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Adenosina Trifosfato/metabolismo , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Proteínas Cromosómicas no Histona/genética , Microscopía por Crioelectrón , Cristalografía por Rayos X , ADN de Hongos/metabolismo , Hidrólisis , Complejos Multiproteicos/química , Complejos Multiproteicos/metabolismo , Conformación Proteica , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
6.
Cell ; 139(3): 547-59, 2009 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-19879841

RESUMEN

The exosome is a conserved macromolecular complex essential for RNA degradation. The nine-subunit core of the eukaryotic exosome shares a similar barrel-like architecture with prokaryotic complexes, but is catalytically inert. Here, we investigate how the Rrp44 nuclease functions in the active ten-subunit exosome. The 3.0 A resolution crystal structure of the yeast Rrp44-Rrp41-Rrp45 complex shows how the nuclease interacts with the exosome core and the relative accessibility of its endoribonuclease and exoribonuclease sites. Biochemical studies indicate that RNAs thread through the central channel of the core to reach the Rrp44 exoribonuclease site. This channeling mechanism involves evolutionary conserved residues. It allows the processive unwinding and degradation of RNA duplexes containing a sufficiently long single-stranded 3' extension, without the requirement for helicase activities. Although the catalytic function of the exosome core has been lost during evolution, the substrate recruitment and binding properties have been conserved from prokaryotes to eukaryotes.


Asunto(s)
Exosomas/química , Exosomas/metabolismo , ARN/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Complejo Multienzimático de Ribonucleasas del Exosoma , Humanos , Modelos Moleculares , Saccharomyces cerevisiae/química
7.
J Cell Biochem ; 124(11): 1685-1694, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37721096

RESUMEN

Metastasis is the main cause of cancer-related death and therapies specifically targeting metastasis are highly needed. Cortical cell polarity (CCP) is a prometastatic property of circulating tumor cells affecting their ability to exit blood vessels and form new metastases that constitute a promising point of attack to prevent metastasis. However, conventional fluorescence microscopy on single cells and manual quantification of CCP are time-consuming and unsuitable for screening regulators. In this study, we developed an imaging flow cytometry-based method for high-throughput screening of factors affecting CCP in melanoma cells. The artificial intelligence-supported analysis method we developed is highly reproducible, accurate, and orders of magnitude faster than manual quantification. Additionally, this method is flexible and can be adapted to include additional cellular parameters. In a small-scale pilot experiment using polarity-, cytoskeleton-, or membrane-affecting drugs, we demonstrate that our workflow provides a straightforward and efficient approach for screening factors affecting CCP in cells in suspension and provide insights into the specific function of these drugs in this cellular system. The method and workflow presented here will facilitate large-scale studies to reveal novel cell-intrinsic as well as systemic factors controlling CCP during metastasis.


Asunto(s)
Inteligencia Artificial , Polaridad Celular , Citometría de Flujo/métodos , Ensayos Analíticos de Alto Rendimiento/métodos , Microscopía Fluorescente/métodos
8.
EMBO J ; 38(9)2019 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-30940671

RESUMEN

Intraflagellar transport (IFT) relies on motor proteins and the IFT complex to construct cilia and flagella. The IFT complex subunit IFT22/RabL5 has sequence similarity with small GTPases although the nucleotide specificity is unclear because of non-conserved G4/G5 motifs. We show that IFT22 specifically associates with G-nucleotides and present crystal structures of IFT22 in complex with GDP, GTP, and with IFT74/81. Our structural analysis unravels an unusual GTP/GDP-binding mode of IFT22 bypassing the classical G4 motif. The GTPase switch regions of IFT22 become ordered upon complex formation with IFT74/81 and mediate most of the IFT22-74/81 interactions. Structure-based mutagenesis reveals that association of IFT22 with the IFT complex is essential for flagellum construction in Trypanosoma brucei although IFT22 GTP-loading is not strictly required.


Asunto(s)
Cilios/fisiología , Flagelos/fisiología , Guanosina Difosfato/metabolismo , Guanosina Trifosfato/metabolismo , Proteínas Protozoarias/química , Proteínas Protozoarias/metabolismo , Trypanosoma brucei brucei/metabolismo , Cristalización , Cristalografía por Rayos X , Conformación Proteica , Transporte de Proteínas , Trypanosoma
9.
Genet Med ; 24(11): 2249-2261, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36074124

RESUMEN

PURPOSE: The clinical spectrum of motile ciliopathies includes laterality defects, hydrocephalus, and infertility as well as primary ciliary dyskinesia when impaired mucociliary clearance results in otosinopulmonary disease. Importantly, approximately 30% of patients with primary ciliary dyskinesia lack a genetic diagnosis. METHODS: Clinical, genomic, biochemical, and functional studies were performed alongside in vivo modeling of DAW1 variants. RESULTS: In this study, we identified biallelic DAW1 variants associated with laterality defects and respiratory symptoms compatible with motile cilia dysfunction. In early mouse embryos, we showed that Daw1 expression is limited to distal, motile ciliated cells of the node, consistent with a role in left-right patterning. daw1 mutant zebrafish exhibited reduced cilia motility and left-right patterning defects, including cardiac looping abnormalities. Importantly, these defects were rescued by wild-type, but not mutant daw1, gene expression. In addition, pathogenic DAW1 missense variants displayed reduced protein stability, whereas DAW1 loss-of-function was associated with distal type 2 outer dynein arm assembly defects involving axonemal respiratory cilia proteins, explaining the reduced cilia-induced fluid flow in particle tracking velocimetry experiments. CONCLUSION: Our data define biallelic DAW1 variants as a cause of human motile ciliopathy and determine that the disease mechanism involves motile cilia dysfunction, explaining the ciliary beating defects observed in affected individuals.


Asunto(s)
Trastornos de la Motilidad Ciliar , Ciliopatías , Proteínas del Citoesqueleto , Animales , Humanos , Ratones , Axonema/genética , Cilios/metabolismo , Trastornos de la Motilidad Ciliar/genética , Trastornos de la Motilidad Ciliar/metabolismo , Trastornos de la Motilidad Ciliar/patología , Ciliopatías/genética , Ciliopatías/metabolismo , Ciliopatías/patología , Proteínas del Citoesqueleto/genética , Mutación , Proteínas/genética , Pez Cebra/genética
10.
EMBO Rep ; 21(6): e49234, 2020 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-32270908

RESUMEN

Centrosome amplification is a hallmark of cancer, and centrosome clustering is essential for cancer cell survival. The mitotic kinesin HSET is an essential contributor to this process. Recent studies have highlighted novel functions for intraflagellar transport (IFT) proteins in regulating motors and mitotic processes. Here, using siRNA knock-down of various IFT proteins or AID-inducible degradation of endogenous IFT88 in combination with small-molecule inhibition of HSET, we show that IFT proteins together with HSET are required for efficient centrosome clustering. We identify a direct interaction between the kinesin HSET and IFT proteins, and we define how IFT proteins contribute to clustering dynamics during mitosis using high-resolution live imaging of centrosomes. Finally, we demonstrate the requirement of IFT88 for efficient centrosome clustering in a variety of cancer cell lines naturally harboring supernumerary centrosomes and its importance for cancer cell proliferation. Overall, our data unravel a novel role for the IFT machinery in centrosome clustering during mitosis in cells harboring supernumerary centrosomes.


Asunto(s)
Proteínas Portadoras , Centrosoma , Proteínas Portadoras/genética , Centrosoma/metabolismo , Análisis por Conglomerados , Cinesinas/genética , Cinesinas/metabolismo , Mitosis/genética
11.
Hum Mol Genet ; 28(16): 2720-2737, 2019 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-31042281

RESUMEN

Mutations in genes encoding components of the intraflagellar transport (IFT) complexes have previously been associated with a spectrum of diseases collectively termed ciliopathies. Ciliopathies relate to defects in the formation or function of the cilium, a sensory or motile organelle present on the surface of most cell types. IFT52 is a key component of the IFT-B complex and ensures the interaction of the two subcomplexes, IFT-B1 and IFT-B2. Here, we report novel IFT52 biallelic mutations in cases with a short-rib thoracic dysplasia (SRTD) or a congenital anomaly of kidney and urinary tract (CAKUT). Combining in vitro and in vivo studies in zebrafish, we showed that SRTD-associated missense mutation impairs IFT-B complex assembly and IFT-B2 ciliary localization, resulting in decreased cilia length. In comparison, CAKUT-associated missense mutation has a mild pathogenicity, thus explaining the lack of skeletal defects in CAKUT case. In parallel, we demonstrated that the previously reported homozygous nonsense IFT52 mutation associated with Sensenbrenner syndrome [Girisha et al. (2016) A homozygous nonsense variant in IFT52 is associated with a human skeletal ciliopathy. Clin. Genet., 90, 536-539] leads to exon skipping and results in a partially functional protein. Finally, our work uncovered a novel role for IFT52 in microtubule network regulation. We showed that IFT52 interacts and partially co-localized with centrin at the distal end of centrioles where it is involved in its recruitment and/or maintenance. Alteration of this function likely contributes to centriole splitting observed in Ift52-/- cells. Altogether, our findings allow a better comprehensive genotype-phenotype correlation among IFT52-related cases and revealed a novel, extra-ciliary role for IFT52, i.e. disruption may contribute to pathophysiological mechanisms.


Asunto(s)
Proteínas Portadoras/genética , Centrosoma/metabolismo , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Microtúbulos/metabolismo , Mutación , Secuencia de Aminoácidos , Animales , Animales Modificados Genéticamente , Proteínas Portadoras/química , Proteínas Portadoras/metabolismo , Niño , Preescolar , Cilios/metabolismo , Consanguinidad , Análisis Mutacional de ADN , Femenino , Genotipo , Homocigoto , Humanos , Lactante , Péptidos y Proteínas de Señalización Intracelular , Masculino , Linaje , Fenotipo , Unión Proteica , Dominios y Motivos de Interacción de Proteínas/genética , Combinación Trimetoprim y Sulfametoxazol/metabolismo , Secuenciación del Exoma , Pez Cebra
12.
Biochem Biophys Res Commun ; 584: 19-25, 2021 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-34753064

RESUMEN

The primary cilium is a sensory organelle at the cell surface with integral functions in cell signaling. It contains a microtubular axoneme that is rooted in the basal body (BB) and serves as a scaffold for the movement of intraflagellar transport (IFT) particles by Kinesin-2 along the cilium. Ift88, a member of the anterograde moving IFT-B1 complex, as well as the Kinesin-2 subunit Kif3a are required for cilia formation. To facilitate signaling, the cilium restricts the access of molecules to its membrane ("ciliary gate"). This is thought to be mediated by cytoskeletal barriers ("subciliary domains") originating from the BB subdistal/distal appendages, the periciliary membrane compartment (PCMC) as well as the transition fibers and zone (TF/TZ). The PCMC is a poorly characterized membrane domain surrounding the ciliary base with exclusion of certain apical membrane proteins. Here we describe that Ift88, but not Kinesin-2, is required for the establishment of the PCMC in MDCK cells. Likewise, in C. elegans mutants of the Ift88 ortholog osm-5 fail to establish the PCMC, while Kinesin-2 deficient osm-3 mutants form PCMCs normally. Furthermore, disruption of IFT-B1 into two subcomplexes, while disrupting ciliogenesis, does not interfere with PCMC formation. Our findings suggest that cilia are not a prerequisite for the formation of the PCMC, and that separate machineries with partially overlapping functions are required for the establishment of each.


Asunto(s)
Membrana Celular/metabolismo , Cilios/metabolismo , Células Epiteliales/metabolismo , Cinesinas/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Animales , Cuerpos Basales/metabolismo , Caenorhabditis elegans/citología , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Citoesqueleto/metabolismo , Perros , Células de Riñón Canino Madin Darby , Microscopía Fluorescente , Proteínas del Tejido Nervioso/metabolismo , Transducción de Señal
13.
EMBO J ; 35(7): 773-90, 2016 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-26912722

RESUMEN

Intraflagellar transport (IFT) relies on the IFT complex and is required for ciliogenesis. The IFT-B complex consists of 9-10 stably associated core subunits and six "peripheral" subunits that were shown to dissociate from the core structure at moderate salt concentration. We purified the six "peripheral"IFT-B subunits of Chlamydomonas reinhardtiias recombinant proteins and show that they form a stable complex independently of the IFT-B core. We suggest a nomenclature of IFT-B1 (core) and IFT-B2 (peripheral) for the two IFT-B subcomplexes. We demonstrate that IFT88, together with the N-terminal domain of IFT52, is necessary to bridge the interaction between IFT-B1 and B2. The crystal structure of IFT52N reveals highly conserved residues critical for IFT-B1/IFT-B2 complex formation. Furthermore, we show that of the three IFT-B2 subunits containing a calponin homology (CH) domain (IFT38, 54, and 57), only IFT54 binds αß-tubulin as a potential IFT cargo, whereas the CH domains of IFT38 and IFT57 mediate the interaction with IFT80 and IFT172, respectively. Crystal structures of IFT54 CH domains reveal that tubulin binding is mediated by basic surface-exposed residues.


Asunto(s)
Chlamydomonas reinhardtii/metabolismo , Flagelos/metabolismo , Proteínas de Plantas/metabolismo , Tubulina (Proteína)/metabolismo , Cristalografía por Rayos X , Proteínas de Plantas/química
14.
J Cell Sci ; 130(9): 1662-1674, 2017 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-28302912

RESUMEN

Cilia are microtubule-based organelles and perform motile, sensing and signaling functions. The assembly and maintenance of cilia depend on intraflagellar transport (IFT). Besides ciliary localization, most IFT proteins accumulate at basal bodies. However, little is known about the molecular mechanism of basal body targeting of IFT proteins. We first identified the possible basal body-targeting sequence in IFT46 by expressing IFT46 truncation constructs in an ift46-1 mutant. The C-terminal sequence between residues 246-321, termed BBTS3, was sufficient to target YFP to basal bodies in the ift46-1 strain. Interestingly, BBTS3 is also responsible for the ciliary targeting of IFT46. BBTS3::YFP moves bidirectionally in flagella and interacts with other IFT complex B (IFT-B) proteins. Using IFT and motor mutants, we show that the basal body localization of IFT46 depends on IFT52, but not on IFT81, IFT88, IFT122, FLA10 or DHC1b. IFT52 interacts with IFT46 through residues L285 and L286 of IFT46 and recruits it to basal bodies. Ectopic expression of the C-terminal domain of IFT52 in the nucleus resulted in accumulation of IFT46 in nuclei. These data suggest that IFT52 and IFT46 can preassemble as a complex in the cytoplasm, which is then targeted to basal bodies.


Asunto(s)
Cuerpos Basales/metabolismo , Chlamydomonas reinhardtii/metabolismo , Flagelos/metabolismo , Axonema/metabolismo , Movimiento Celular , Núcleo Celular/metabolismo , Chlamydomonas reinhardtii/citología , Cilios/metabolismo , Modelos Biológicos , Señales de Localización Nuclear , Transporte de Proteínas , Proteínas Recombinantes de Fusión/metabolismo
15.
J Biol Chem ; 292(18): 7462-7473, 2017 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-28298440

RESUMEN

Motile cilia are found on unicellular organisms such as the green alga Chlamydomonas reinhardtii, on sperm cells, and on cells that line the trachea and fallopian tubes in mammals. The motility of cilia relies on a number of large protein complexes including the force-generating outer dynein arms (ODAs). The transport of ODAs into cilia has been previously shown to require the transport adaptor ODA16, as well as the intraflagellar transport (IFT) protein IFT46, but the molecular mechanism by which ODAs are recognized and transported into motile cilia is still unclear. Here, we determined the high-resolution crystal structure of C. reinhardtii ODA16 (CrODA16) and mapped the binding to IFT46 and ODAs. The CrODA16 structure revealed a small 80-residue N-terminal domain and a C-terminal 8-bladed ß-propeller domain that are both required for the association with the N-terminal 147 residues of IFT46. The dissociation constant of the IFT46-ODA16 complex was 200 nm, demonstrating that CrODA16 associates with the IFT complex with an affinity comparable with that of the individual IFT subunits. Furthermore, we show, using ODAs extracted from the axonemes of C. reinhardtii, that the C-terminal ß-propeller but not the N-terminal domain of CrODA16 is required for the interaction with ODAs. These data allowed us to present an architectural model for ODA16-mediated IFT of ODAs.


Asunto(s)
Proteínas Portadoras , Chlamydomonas reinhardtii , Dineínas , Flagelos , Proteínas de Plantas , Axonema/química , Axonema/genética , Axonema/metabolismo , Proteínas Portadoras/química , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Chlamydomonas reinhardtii/química , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/metabolismo , Cristalografía por Rayos X , Dineínas/química , Dineínas/genética , Dineínas/metabolismo , Flagelos/química , Flagelos/genética , Flagelos/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Dominios Proteicos , Transporte de Proteínas/fisiología
16.
Proteins ; 86(4): 405-413, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29318657

RESUMEN

Rab GTPases and their effectors, activators and guanine nucleotide exchange factors (GEFs) are essential for vesicular transport. Rab8 and its GEF Rabin8 function in formation of the cilium organelle important for developmental signaling and sensory reception. Here, we show by size exclusion chromatography and analytical ultracentrifugation that Rabin8 exists in equilibrium between dimers and tetramers. The crystal structure of tetrameric Rabin8 GEF domain reveals an occluded Rab8 binding site suggesting that this oligomer is enzymatically inactive, a notion we verify experimentally using Rabin8/Rab8 GEF assays. We outline a procedure for the purification of active dimeric Rabin8 GEF-domain for in vitro activity assays.


Asunto(s)
Proteínas Serina-Treonina Quinasas/química , Sitios de Unión , Cristalografía por Rayos X , Quinasas del Centro Germinal , Humanos , Modelos Moleculares , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de Unión al GTP rab/metabolismo
17.
Mol Cell ; 29(6): 717-28, 2008 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-18374646

RESUMEN

The eukaryotic exosome is a macromolecular complex essential for RNA processing and decay. It has recently been shown that the RNase activity of the yeast exosome core can be mapped to a single subunit, Rrp44, which processively degrades single-stranded RNAs as well as RNAs containing secondary structures. Here we present the 2.3 A resolution crystal structure of S. cerevisiae Rrp44 in complex with single-stranded RNA. Although Rrp44 has a linear domain organization similar to bacterial RNase II, in three dimensions the domains have a different arrangement. The three domains of the classical nucleic-acid-binding OB fold are positioned on the catalytic domain such that the RNA-binding path observed in RNase II is occluded. Instead, RNA is threaded to the catalytic site via an alternative route suggesting a mechanism for RNA-duplex unwinding. The structure provides a molecular rationale for the observed biochemical properties of the RNase R family of nucleases.


Asunto(s)
Exorribonucleasas/metabolismo , ARN de Hongos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Secuencia de Aminoácidos , Complejo Multienzimático de Ribonucleasas del Exosoma , Modelos Moleculares , Datos de Secuencia Molecular , Conformación Proteica , Subunidades de Proteína/metabolismo , ARN de Hongos/química , ARN de Hongos/genética , Saccharomyces cerevisiae/enzimología , Proteínas de Saccharomyces cerevisiae/química , Homología de Secuencia de Aminoácido , Especificidad por Sustrato
18.
J Med Genet ; 52(10): 657-65, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26275418

RESUMEN

BACKGROUND: Bidirectional intraflagellar transport (IFT) consists of two major protein complexes, IFT-A and IFT-B. In contrast to the IFT-B complex, all components of IFT-A have recently been linked to human ciliopathies when defective. We therefore hypothesised that mutations in additional IFT-B encoding genes can be found in patients with multisystemic ciliopathies. METHODS: We screened 1628 individuals with reno-ocular ciliopathies by targeted next-generation sequencing of ciliary candidate genes, including all IFT-B encoding genes. RESULTS: Consequently, we identified a homozygous mutation in IFT81 affecting an obligatory donor splice site in an individual with nephronophthisis and polydactyly. Further, we detected a loss-of-stop mutation with extension of the deduced protein by 10 amino acids in an individual with neuronal ceroid lipofuscinosis-1. This proband presented with retinal dystrophy and brain lesions including cerebellar atrophy, a phenotype to which the IFT81 variant might contribute. Cultured fibroblasts of this latter affected individual showed a significant decrease in ciliated cell abundance compared with controls and increased expression of the transcription factor GLI2 suggesting deranged sonic hedgehog signalling. CONCLUSIONS: This work describes identification of mutations of IFT81 in individuals with symptoms consistent with the clinical spectrum of ciliopathies. It might represent the rare case of a core IFT-B complex protein found associated with human disease. Our data further suggest that defects in the IFT-B core are an exceedingly rare finding, probably due to its indispensable role for ciliary assembly in development.


Asunto(s)
Cilios/genética , Cilios/patología , Ojo/patología , Riñón/patología , Proteínas Musculares/genética , Humanos , Mutación , Análisis de Secuencia de ADN
19.
Bioessays ; 36(5): 463-7, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24616010

RESUMEN

Cilia are microtubule-based hair-like structures that project from the surfaces of eukaryotic cells. Cilium formation relies on intraflagellar transport (IFT) to move ciliary proteins such as tubulin from the site of synthesis in the cell body to the site of function in the cilium. A large protein complex (the IFT complex) is believed to mediate interactions between cargoes and the molecular motors that walk along axonemal microtubules between the ciliary base and tip. A recent study using purified IFT complexes has identified a tubulin-binding module in the two core IFT proteins IFT74 and IFT81 that likely serves to bind and transport tubulin within cilia. Here, we calculate the amount of tubulin required to support the observed cilium assembly kinetics and explore the possibility of multiple tubulin binding sites within the IFT complex.


Asunto(s)
Cilios/metabolismo , Proteínas del Citoesqueleto/metabolismo , Tubulina (Proteína)/metabolismo , Animales , Sitios de Unión , Transporte Biológico , Humanos , Unión Proteica , Estructura Terciaria de Proteína , Tubulina (Proteína)/química
20.
Adv Exp Med Biol ; 896: 305-14, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27165333

RESUMEN

Cellular function relies on protein complexes that work as nano-machines. The structure and function of protein complexes is an outcome of the specific combination of protein subunits, or modules, within the complex. A major focus of molecular biology is thus to understand how protein subunits assemble to form complexes with distinct biological function. To this end, in vitro reconstitution of complexes from individual subunits to study their assembly, structure and activity is of central importance. With purified individual subunits and sub-modules at hand one can systematically dissect the hierarchical assembly of larger complexes using direct protein-protein interaction assays. Furthermore, activity assays can be carried out with individual subunits or smaller sub-complexes and compared to those of the fully assembled complex to precisely map functional sites and provide a molecular basis for in vivo observations. In this chapter we review methods for protein complex assembly from individual subunits and provide examples of advantages and potential pitfalls to this approach.


Asunto(s)
Proteínas Recombinantes/metabolismo , Animales , Cromatografía en Gel , Humanos , Complejos Multiproteicos , Ingeniería de Proteínas/métodos , Pliegue de Proteína , Multimerización de Proteína , Estabilidad Proteica , Estructura Cuaternaria de Proteína , Subunidades de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA