Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Circ Res ; 135(2): 301-313, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38860363

RESUMEN

BACKGROUND: The tumor suppressor and proapoptotic transcription factor P53 is induced (and activated) in several forms of heart failure, including cardiotoxicity and dilated cardiomyopathy; however, the precise mechanism that coordinates its induction with accessibility to its transcriptional promoter sites remains unresolved, especially in the setting of mature terminally differentiated (nonreplicative) cardiomyocytes. METHODS: Male and female control or TRIM35 (tripartite motif containing 35) overexpression adolescent (aged 1-3 months) and adult (aged 4-6 months) transgenic mice were used for all in vivo experiments. Primary adolescent or adult mouse cardiomyocytes were isolated from control or TRIM35 overexpression transgenic mice for all in vitro experiments. Adenovirus or small-interfering RNA was used for all molecular experiments to overexpress or knockdown, respectively, target genes in primary mouse cardiomyocytes. Patient dilated cardiomyopathy or nonfailing left ventricle samples were used for translational and mechanistic insight. Chromatin immunoprecipitation and DNA sequencing or quantitative real-time polymerase chain reaction (qPCR) was used to assess P53 binding to its transcriptional promoter targets, and RNA sequencing was used to identify disease-specific signaling pathways. RESULTS: Here, we show that E3-ubiquitin ligase TRIM35 can directly monoubiquitinate lysine-120 (K120) on histone 2B in postnatal mature cardiomyocytes. This epigenetic modification was sufficient to promote chromatin remodeling, accessibility of P53 to its transcriptional promoter targets, and elongation of its transcribed mRNA. We found that increased P53 transcriptional activity (in cardiomyocyte-specific Trim35 overexpression transgenic mice) was sufficient to initiate heart failure and these molecular findings were recapitulated in nonischemic human LV dilated cardiomyopathy samples. CONCLUSIONS: These findings suggest that TRIM35 and the K120Ub-histone 2B epigenetic modification are molecular features of cardiomyocytes that can collectively predict dilated cardiomyopathy pathogenesis.


Asunto(s)
Insuficiencia Cardíaca , Histonas , Ratones Transgénicos , Miocitos Cardíacos , Proteína p53 Supresora de Tumor , Ubiquitinación , Animales , Femenino , Humanos , Masculino , Ratones , Cardiomiopatía Dilatada/metabolismo , Cardiomiopatía Dilatada/genética , Cardiomiopatía Dilatada/patología , Células Cultivadas , Insuficiencia Cardíaca/metabolismo , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/patología , Histonas/metabolismo , Ratones Endogámicos C57BL , Miocitos Cardíacos/metabolismo , Regiones Promotoras Genéticas , Proteína p53 Supresora de Tumor/metabolismo , Proteína p53 Supresora de Tumor/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética
2.
Cell Rep ; 43(8): 114573, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39093701

RESUMEN

Growth differentiation factor 15 (GDF15) is a peptide with utility in obesity, as it decreases appetite and promotes weight loss. Because obesity increases the risk for type 2 diabetes (T2D) and cardiovascular disease, it is imperative to understand the cardiovascular actions of GDF15, especially since elevated GDF15 levels are an established biomarker for heart failure. As weight loss should be encouraged in the early stages of obesity-related prediabetes/T2D, where diabetic cardiomyopathy is often present, we assessed whether treatment with GDF15 influences its pathology. We observed that GDF15 treatment alleviates diastolic dysfunction in mice with T2D independent of weight loss. This cardioprotection was associated with a reduction in cardiac inflammation, which was likely mediated via indirect actions, as direct treatment of adult mouse cardiomyocytes and differentiated THP-1 human macrophages with GDF15 failed to alleviate lipopolysaccharide-induced inflammation. Therapeutic manipulation of GDF15 action may thus have utility for both obesity and diabetic cardiomyopathy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA