RESUMEN
Cytotoxicity of many plant and bacterial toxins requires their endocytosis and retrograde transport from endosomes to the endoplasmic reticulum. Using cell fractionation and immunoblotting procedures, we have assessed the fate and action of the plant toxin ricin in rat liver in vivo, focusing on endosome-associated events and induction of apoptosis. Injected ricin rapidly accumulated in endosomes as an intact A/B heterodimer (5-90 min) and was later (15-90 min) partially translocated to cytosol as A- and B-chains. Unlike cholera and diphtheria toxins, which also undergo endocytosis in liver, neither in cell-free endosomes loaded by ricin in vivo nor upon incubation with endosomal lysates did ricin undergo degradation in vitro. A time-dependent translocation of ricin across the endosomal membrane occurred in cell-free endosomes. Endosome-located thioredoxin reductase-1 was required for translocation as shown by its physical association with ricin chains and effects of its removal and inhibition. Ricin induced in vivo intrinsic apoptosis as judged by increased cytochrome c content, activation of caspase-9 and caspase-3, and enrichment of DNA fragments in cytosol. Furthermore, reduced ricin and ricin B-chain caused cytochrome c release from mitochondria in vivo and in vitro, suggesting that the interaction of ricin B-chain with mitochondria is involved in ricin-induced apoptosis.
Asunto(s)
Retículo Endoplásmico/efectos de los fármacos , Endosomas/efectos de los fármacos , Hígado/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Ricina/farmacocinética , Ricina/toxicidad , Animales , Apoptosis/efectos de los fármacos , Caspasa 3/genética , Caspasa 3/metabolismo , Caspasa 9/genética , Caspasa 9/metabolismo , Fraccionamiento Celular , Citocromos c/genética , Citocromos c/metabolismo , Fragmentación del ADN , Retículo Endoplásmico/metabolismo , Retículo Endoplásmico/ultraestructura , Endosomas/metabolismo , Endosomas/ultraestructura , Expresión Génica , Hepatocitos/citología , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Membranas Intracelulares/efectos de los fármacos , Membranas Intracelulares/metabolismo , Membranas Intracelulares/ultraestructura , Hígado/citología , Hígado/metabolismo , Masculino , Mitocondrias/metabolismo , Multimerización de Proteína , Transporte de Proteínas , Ratas , Ratas Sprague-Dawley , Ricina/síntesis química , Tiorredoxina Reductasa 1/genética , Tiorredoxina Reductasa 1/metabolismoRESUMEN
Beyond its presence in stable microtubules, tubulin acetylation can be boosted after UV exposure or after nutrient deprivation, but the mechanisms of microtubule hyperacetylation are still unknown. In this study, we show that this hyperacetylation is a common response to several cellular stresses that involves the stimulation of the major tubulin acetyltransferase MEC-17. We also demonstrate that the acetyltransferase p300 negatively regulates MEC-17 expression and is sequestered on microtubules upon stress. We further show that reactive oxygen species of mitochondrial origin are required for microtubule hyperacetylation by activating the AMP kinase, which in turn mediates MEC-17 phosphorylation upon stress. Finally, we show that preventing microtubule hyperacetylation by knocking down MEC-17 affects cell survival under stress conditions and starvation-induced autophagy, thereby pointing out the importance of this rapid modification as a broad cell response to stress.
Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Acetiltransferasas/metabolismo , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo , Factores de Transcripción p300-CBP/metabolismo , Acetilación , Acetiltransferasas/genética , Animales , Secuencia de Bases , Línea Celular , Humanos , Ratones , Microtúbulos/metabolismo , ARN Interferente PequeñoRESUMEN
Both at a basal level and after induction (especially in response to nutrient starvation), the function of autophagy is to allow cells to degrade and recycle damaged organelles, proteins and other biological constituents. Here, we focus on the role microtubules have in autophagosome formation, autophagosome transport across the cytoplasm and in the formation of autolysosomes. Recent insights into the exact relationship between autophagy and microtubules now point to the importance of microtubule dynamics, tubulin post-translational modifications and microtubule motors in the autophagy process. Such factors regulate signaling pathways that converge to stimulate autophagosome formation. They also orchestrate the movements of pre-autophagosomal structures and autophagosomes or more globally organize and localize immature and mature autophagosomes and lysosomes. Most of the factors that now appear to link microtubules to autophagosome formation or to autophagosome dynamics and fate were identified initially without the notion that sequestration, recruitment and/or interaction with microtubules contribute to their function. Spatial and temporal coordination of many stages in the life of autophagosomes thus underlines the integrative role of microtubules and progressively reveals hidden parts of the autophagy machinery.
Asunto(s)
Autofagia/fisiología , Microtúbulos/metabolismo , Animales , Humanos , Lisosomas/metabolismo , Modelos Biológicos , Fagocitosis/fisiología , Procesamiento Proteico-Postraduccional , Tubulina (Proteína)/metabolismoRESUMEN
Amino acids not only participate in intermediary metabolism but also stimulate insulin-mechanistic target of rapamycin (MTOR)-mediated signal transduction which controls the major metabolic pathways. Among these is the pathway of autophagy which takes care of the degradation of long-lived proteins and of the elimination of damaged or functionally redundant organelles. Proper functioning of this process is essential for cell survival. Dysregulation of autophagy has been implicated in the etiology of several pathologies. The history of the studies on the interrelationship between amino acids, MTOR signaling and autophagy is the subject of this review. The mechanisms responsible for the stimulation of MTOR-mediated signaling, and the inhibition of autophagy, by amino acids have been studied intensively in the past but are still not completely clarified. Recent developments in this field are discussed.
Asunto(s)
Aminoácidos/metabolismo , Autofagia , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo , Animales , HumanosRESUMEN
The modulation of macroautophagy is now recognized as one of the hallmarks of cancer cells. There is accumulating evidence that autophagy plays a role in the various stages of tumorigenesis. Depending on the type of cancer and the context, macroautophagy can be tumor suppressor or it can help cancer cells to overcome metabolic stress and the cytotoxicity of chemotherapy. Recent studies have shed light on the role of macroautophagy in tumor-initiating cells, in tumor immune response cross-talk with the microenvironment. This review is intended to provide an up-date on these aspects, and to discuss them with regard to the role of the major signaling sub-networks involved in tumor progression (Beclin 1, MTOR, p53 and RAS) and in regulating autophagy.
Asunto(s)
Autofagia/fisiología , Neoplasias/patología , Animales , Progresión de la Enfermedad , Humanos , Transducción de SeñalRESUMEN
In Podospora anserina, inactivation of the respiratory chain results in a spectacular life-span extension. This inactivation is accompanied by the induction of the alternative oxidase. Although the functional value of this response is evident, the mechanism behind it is far from understood. By screening suppressors able to reduce the life-span extension of cytochrome-deficient mutants, we identified mutations in two zinc-cluster proteins, RSE2 and RSE3, which are conserved in other ascomycetes. These mutations led to the overexpression of the genes encoding the alternative oxidase and the gluconeogenic enzymes, fructose-1, 6 biphosphatase, and pyruvate carboxykinase. Both RSE2 and RSE3 are required for the expression of these genes. We also show that, even in the absence of a respiratory deficiency, the wild-type RSE2 and RSE3 transcription factors are involved in life-span control and their inactivation retards aging. These data are discussed with respect to aging, the regulation of the alternative oxidase, and carbon metabolism.
Asunto(s)
Envejecimiento , Mutación , Oxidorreductasas/metabolismo , Podospora/genética , Factores de Transcripción/genética , Dedos de Zinc , Respiración de la Célula , Fructosa-Bifosfatasa/genética , Fructosa-Bifosfatasa/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales , Oxidorreductasas/genética , Fosfoenolpiruvato Carboxiquinasa (ATP)/genética , Fosfoenolpiruvato Carboxiquinasa (ATP)/metabolismo , Proteínas de Plantas , Podospora/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Secuencias Repetitivas de Ácidos Nucleicos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal , Factores de Transcripción/metabolismo , Transformación GenéticaAsunto(s)
Autofagia/fisiología , Glutamato Deshidrogenasa/fisiología , Leucina/metabolismo , Glutamato Deshidrogenasa/metabolismo , Glutamina/fisiología , Humanos , Diana Mecanicista del Complejo 1 de la Rapamicina , Modelos Biológicos , Complejos Multiproteicos/metabolismo , Neoplasias/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/fisiología , Serina-Treonina Quinasas TOR/metabolismoRESUMEN
The filamentous fungus Podospora anserina has a limited lifespan. In this organism, aging is systematically associated to mitochondrial DNA instability. We recently provided evidence that the respiratory function is a key determinant of its lifespan. Loss of function of the cytochrome pathway leads to the compensatory induction of an alternative oxidase, to a decreased production of reactive oxygen species and to a striking increase in lifespan. These changes are associated to the stabilization of the mitochondrial DNA. Here we review and discuss the links between these different parameters and their implication in the control of lifespan. Since we demonstrated the central role of mitochondrial metabolism in aging, the same relationship has been evidenced in several model systems from yeast to mice, confirming the usefulness of simple organisms as P. anserina for studying lifespan regulation.
Asunto(s)
Mitocondrias/metabolismo , Podospora/fisiología , Envejecimiento/fisiología , Animales , Respiración de la Célula/fisiología , Citocromos/metabolismo , ADN de Hongos/fisiología , ADN Mitocondrial/fisiología , Proteínas Fúngicas/metabolismo , Oxidorreductasas/metabolismo , Podospora/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Especificidad de la Especie , Factores de TiempoRESUMEN
Mitochondria dynamics results from fission and fusion events that may be unbalanced in favor of mitochondrial fragmentation upon cell stress. During oxidative stress, microtubules are hyperacetylated in a mitochondria-dependent manner. In this study, we show that under stress conditions, most of the mitochondria form foci with microtubule domains that carry Drp1. We also demonstrate that stress-induced hyperacetylation of microtubules is required for the effective induction of Drp1 phosphorylation at 616Ser, in a kinesin-1- and c-Jun N-terminal kinase-dependent manner. Furthermore, hyperacetylation of microtubules contributes to the recruitment of total Drp1 to mitochondria to enhance fission. These results highlight a new way of interaction between microtubules and mitochondria dynamics.
Asunto(s)
GTP Fosfohidrolasas/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Mitocondrias/metabolismo , Dinámicas Mitocondriales , Proteínas Mitocondriales/metabolismo , Estrés Oxidativo , Serina/metabolismo , Acetilación , Dinaminas , GTP Fosfohidrolasas/genética , Células HeLa , Humanos , Cinesinas/genética , Cinesinas/metabolismo , Proteínas Asociadas a Microtúbulos/genética , Proteínas Mitocondriales/genética , Fosforilación , Proteínas Proto-Oncogénicas c-jun/genética , Proteínas Proto-Oncogénicas c-jun/metabolismo , Estadísticas no ParamétricasRESUMEN
A causal link between deficiency of the cytochrome respiratory pathway and life span was previously shown in the filamentous fungus Podospora anserina. To gain more insight into the relationship between mitochondrial function and life span, we have constructed a strain carrying a thermosensitive mutation of the gene oxa1. OXA1 is a membrane protein conserved from bacteria to human. The mitochondrial OXA1 protein is involved in the assembly/insertion of several respiratory complexes. We show here that oxa1 is an essential gene in P. anserina. The oxa1(ts) mutant exhibits severe defects in the respiratory complexes I and IV, which are correlated with an increased life span, a strong induction of the alternative oxidase, and a reduction in ROS production. However, there is no causal link between alternative oxidase level and life span. We also show that in the oxa1(ts) mutant, the extent of the defects in complexes I and IV and the life-span increase depends on the essential gene rmp1. The RMP1 protein, whose function is still unknown, can be localized in the mitochondria and/or the cytosolic compartment, depending on the developmental stage. We propose that the RMP1 protein could be involved in the process of OXA1-dependent protein insertion.
Asunto(s)
Complejo IV de Transporte de Electrones/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Podospora/genética , Sustitución de Aminoácidos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Clonación Molecular , ADN Complementario/genética , Complejo IV de Transporte de Electrones/genética , Proteínas Fúngicas/genética , Biblioteca de Genes , Humanos , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Mutación , Plásmidos , Podospora/crecimiento & desarrollo , Mapeo RestrictivoRESUMEN
Amino acids, leucine in particular, are known to inhibit autophagy, at least in part by their ability to stimulate MTOR-mediated signaling. Evidence is presented showing that glutamate dehydrogenase, the central enzyme in amino acid catabolism, contributes to leucine sensing in the regulation of autophagy. The data suggest a dual mechanism by which glutamate dehydrogenase activity modulates autophagy, i.e., by activating MTORC1 and by limiting the formation of reactive oxygen species.
Asunto(s)
Autofagia/efectos de los fármacos , Glutamato Deshidrogenasa/metabolismo , Leucina/farmacología , Técnicas de Silenciamiento del Gen , Células HeLa , Humanos , Diana Mecanicista del Complejo 1 de la Rapamicina , Complejos Multiproteicos/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/efectos de los fármacos , Serina-Treonina Quinasas TOR/metabolismo , Valina/farmacologíaRESUMEN
To assess Pseudomonas exotoxin A (ETA) compartmentalization, processing and cytotoxicity in vivo, we have studied the fate of internalized ETA with the use of the in vivo rodent liver model following toxin administration, cell-free hepatic endosomes, and pure in vitro protease assays. ETA taken up into rat liver in vivo was rapidly associated with plasma membranes (5-30 min), internalized within endosomes (15-60 min), and later translocated into the cytosolic compartment (30-90 min). Coincident with endocytosis of intact ETA, in vivo association of the catalytic ETA-A subunit and low molecular mass ETA-A fragments was observed in the endosomal apparatus. After an in vitro proteolytic assay with an endosomal lysate and pure proteases, the ETA-degrading activity was attributed to the luminal species of endosomal acidic cathepsins B and D, with the major cleavages generated in vitro occurring mainly within domain III of ETA-A. Cell-free endosomes preloaded in vivo with ETA intraluminally processed and extraluminally released intact ETA and ETA-A in vitro in a pH-dependent and ATP-dependent manner. Rat hepatic cells underwent in vivo intrinsic apoptosis at a late stage of ETA infection, as assessed by the mitochondrial release of cytochrome c, caspase-9 and caspase-3 activation, and DNA fragmentation. In an in vitro assay, intact ETA induced ADP-ribosylation of EF-2 and mitochondrial release of cytochrome c, with the former effect being efficiently increased by a cathepsin B/cathepsin D pretreatment. The data show a novel processing pathway for internalized ETA, involving cathepsins B and D, resulting in the production of ETA fragments that may participate in cytotoxicity and mitochondrial dysfunction.
Asunto(s)
ADP Ribosa Transferasas/metabolismo , Apoptosis/efectos de los fármacos , Toxinas Bacterianas/metabolismo , Catepsinas/metabolismo , Exotoxinas/metabolismo , Fragmentos de Péptidos/metabolismo , Fragmentos de Péptidos/farmacología , Pseudomonas aeruginosa/metabolismo , Factores de Virulencia/metabolismo , ADP Ribosa Transferasas/farmacocinética , Animales , Toxinas Bacterianas/farmacocinética , Catepsina B/metabolismo , Catepsina D/metabolismo , Endocitosis , Endosomas/enzimología , Endosomas/metabolismo , Exotoxinas/farmacocinética , Hidrólisis , Hígado/enzimología , Hígado/metabolismo , Masculino , Mitocondrias Hepáticas/efectos de los fármacos , Mitocondrias Hepáticas/enzimología , Mitocondrias Hepáticas/metabolismo , Factor 2 de Elongación Peptídica/metabolismo , Transporte de Proteínas , Ratas , Ratas Sprague-Dawley , Factores de Tiempo , Factores de Virulencia/farmacocinética , Exotoxina A de Pseudomonas aeruginosaRESUMEN
p53 and JNK are two apoptosis-regulatory factors frequently deregulated in cancer cells and also involved in the modulation of autophagy. We have recently investigated the links between these two signalling pathways in terms of the regulation of autophagy. We showed that 2-methoxyestradiol (2-ME), an antitumoral compound, enhances autophagy and apoptosis in Ewing sarcoma cells through the activation of both p53 and JNK pathways. In this context, p53 regulates, at least partially, JNK activation which in turn modulates autophagy through two distinct mechanisms: on the one hand it promotes Bcl-2 phosphorylation resulting in the dissociation of the Beclin 1-Bcl-2 complex and on the other hand it leads to the upregulation of DRAM (Damage-Regulated Autophagy Modulator), a p53 target gene. The critical role of DRAM in 2-ME-mediated autophagy and apoptosis is underlined by the fact that its silencing efficiently prevents the induction of both processes. These findings not only report the interplay between JNK and p53 in the regulation of autophagy but also uncover the role of JNK activation in the regulation of DRAM, a pro-autophagic and proapoptotic protein.
Asunto(s)
Autofagia/genética , Proteínas Quinasas JNK Activadas por Mitógenos/fisiología , Proteínas/fisiología , Proteína p53 Supresora de Tumor/fisiología , 2-Metoxiestradiol , Animales , Autofagia/fisiología , Estradiol/análogos & derivados , Estradiol/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Proteínas Quinasas JNK Activadas por Mitógenos/genética , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Proteínas de la Membrana , Modelos Biológicos , Unión Proteica/efectos de los fármacos , Unión Proteica/genética , Unión Proteica/fisiología , Proteínas/genética , Proteínas/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Transducción de Señal/fisiología , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismoRESUMEN
Ewing sarcoma and osteosarcoma are two aggressive cancers that affect bones and soft tissues in children and adolescents. Despite multimodal therapy, patients with metastatic sarcoma have a poor prognosis, emphasizing a need for more effective treatment. We have shown previously that 2-methoxyestradiol (2-ME), an antitumoral compound, induces apoptosis in Ewing sarcoma cells through c-Jun NH(2)-terminal kinase (JNK) activation. In the present study, we provide evidence that 2-ME elicits macroautophagy, a process that participates in apoptotic responses, in a JNK-dependent manner, in Ewing sarcoma and osteosarcoma cells. We also found that the enhanced activation of JNK by 2-ME is partially regulated by p53, highlighting the relationship of JNK and autophagy to p53 signaling pathway. Furthermore, we showed that 2-ME up-regulates damage-regulated autophagy modulator (DRAM), a p53 target gene, in Ewing sarcoma cells through a mechanism that involves JNK activation. The silencing of DRAM expression reduced both apoptosis and autophagy triggered by 2-ME in Ewing sarcoma and osteosarcoma cells. Our results therefore identify JNK as a novel mediator of DRAM regulation. These findings suggest that 2-ME or other anticancer therapies that increase DRAM expression or function could be used to effectively treat sarcoma patients.
Asunto(s)
Neoplasias Óseas/enzimología , Activación Enzimática/efectos de los fármacos , Estradiol/análogos & derivados , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Proteínas/metabolismo , Sarcoma de Ewing/enzimología , 2-Metoxiestradiol , Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Neoplasias Óseas/tratamiento farmacológico , Neoplasias Óseas/patología , Línea Celular Tumoral , Estradiol/farmacología , Humanos , Proteínas de la Membrana , Sarcoma de Ewing/tratamiento farmacológico , Sarcoma de Ewing/patología , Transducción de Señal/efectos de los fármacos , Moduladores de Tubulina/farmacología , Proteína p53 Supresora de Tumor/metabolismo , Regulación hacia ArribaRESUMEN
Macroautophagy is a lysosomal catabolic process involved in recycling cell components and maintaining cellular homeostasis. Identifying some of the molecules involved in the control and execution steps of autophagy has shed light on the close link between autophagy and tumour progression. Several tumour-suppressor proteins -including Beclin 1, a protein involved in autophagosome formation- positively regulate autophagy. Conversely, some oncogenic proteins display inhibitory effects on autophagy. The antitumoral role of autophagy is supported by its involvement in reducing chromosome instability, proliferation and inflammation of tumour cells. However, autophagy can also be a protumoral mechanism which helps tumour cells to adapt to changes in their microenvironment (hypoxia, starvation...). Moreover, autophagy is induced in response to several anticancer treatments. This response can either be a mechanism allowing cell survival or a mechanism promoting cell death. The aim of this article is to summarize recent progress focusing on the dual role of autophagy in cancer.