Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Opt Express ; 31(1): 396-410, 2023 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-36606975

RESUMEN

Intra-arterial catheter guidance is instrumental to the success of minimally invasive procedures, such as percutaneous transluminal angioplasty. However, traditional device tracking methods, such as electromagnetic or infrared sensors, exhibits drawbacks such as magnetic interference or line of sight requirements. In this work, shape sensing of bends of different curvatures and lengths is demonstrated both asynchronously and in real-time using optical frequency domain reflectometry (OFDR) with a polymer extruded optical fiber triplet with enhanced backscattering properties. Simulations on digital phantoms showed that reconstruction accuracy is of the order of the interrogator's spatial resolution (millimeters) with sensing lengths of less than 1 m and a high SNR.


Asunto(s)
Cánula , Fibras Ópticas , Catéteres de Permanencia , Fantasmas de Imagen , Polímeros
2.
Opt Express ; 27(3): 2488-2498, 2019 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-30732286

RESUMEN

Laser-written waveguides in glass have many potential applications as photonic devices. However, there is little knowledge of the actual profile of the usually asymmetric refractive index (RI) change across the femtosecond (fs) laser-written waveguides. We show, here, a new nondestructive method to measure any symmetric or asymmetric two-dimensional RI profile of fs laser-written waveguides in transparent materials. The method is also suitable for the measurement of the RI profile of any other type of waveguide. A Mach-Zehnder interferometer is used to obtain the phase shift of light propagating transversely through the RI-modified region. A genetic algorithm is then used to determine the matching cross-sectional RI profile based on the known waveguide shape and dimensions. A validation of the method with the comparison to a RNF measurement of the industry-standard SMF-28 is presented, as well as a demonstration of its versatility with measurements on fs laser-written waveguides.

3.
Artículo en Inglés | MEDLINE | ID: mdl-34422444

RESUMEN

Flexible medical instruments, such as Continuum Dexterous Manipulators (CDM), constitute an important class of tools for minimally invasive surgery. Accurate CDM shape reconstruction during surgery is of great importance, yet a challenging task. Fiber Bragg grating (FBG) sensors have demonstrated great potential in shape sensing and consequently tip position estimation of CDMs. However, due to the limited number of sensing locations, these sensors can only accurately recover basic shapes, and become unreliable in the presence of obstacles or many inflection points such as s-bends. Optical Frequency Domain Reflectometry (OFDR), on the other hand, can achieve much higher spatial resolution, and can therefore accurately reconstruct more complex shapes. Additionally, Random Optical Gratings by Ultraviolet laser Exposure (ROGUEs) can be written in the fibers to increase signal to noise ratio of the sensors. In this comparison study, the tip position error is used as a metric to compare both FBG and OFDR shape reconstructions for a 35 mm long CDM developed for orthopedic surgeries, using a pair of stereo cameras as ground truth. Three sets of experiments were conducted to measure the accuracy of each technique in various surgical scenarios. The tip position error for the OFDR (and FBG) technique was found to be 0.32 (0.83) mm in free-bending environment, 0.41 (0.80) mm when interacting with obstacles, and 0.45 (2.27) mm in s-bending. Moreover, the maximum tip position error remains sub-millimeter for the OFDR reconstruction, while it reaches 3.40 mm for FBG reconstruction. These results propose a cost-effective, robust and more accurate alternative to FBG sensors for reconstructing complex CDM shapes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA