Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Inorg Chem ; 63(10): 4461-4473, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38421802

RESUMEN

Two iron complexes featuring the bidentate, nonconjugated N-heterocyclic carbene (NHC) 1,1'-methylenebis(3-methylimidazol-2-ylidene) (mbmi) ligand, where the two NHC moieties are separated by a methylene bridge, have been synthesized to exploit the combined influence of geometric and electronic effects on the ground- and excited-state properties of homoleptic FeIII-hexa-NHC [Fe(mbmi)3](PF6)3 and heteroleptic FeII-tetra-NHC [Fe(mbmi)2(bpy)](PF6)2 (bpy = 2,2'-bipyridine) complexes. They are compared to the reported FeIII-hexa-NHC [Fe(btz)3](PF6)3 and FeII-tetra-NHC [Fe(btz)2(bpy)](PF6)2 complexes containing the conjugated, bidentate mesoionic NHC ligand 3,3'-dimethyl-1,1'-bis(p-tolyl)-4,4'-bis(1,2,3-triazol-5-ylidene) (btz). The observed geometries of [Fe(mbmi)3](PF6)3 and [Fe(mbmi)2(bpy)](PF6)2 are evaluated through L-Fe-L bond angles and ligand planarity and compared to those of [Fe(btz)3](PF6)3 and [Fe(btz)2(bpy)](PF6)2. The FeII/FeIII redox couples of [Fe(mbmi)3](PF6)3 (-0.38 V) and [Fe(mbmi)2(bpy)](PF6)2 (-0.057 V, both vs Fc+/0) are less reducing than [Fe(btz)3](PF6)3 and [Fe(btz)2(bpy)](PF6)2. The two complexes show intense absorption bands in the visible region: [Fe(mbmi)3](PF6)3 at 502 nm (ligand-to-metal charge transfer, 2LMCT) and [Fe(mbmi)2(bpy)](PF6)2 at 410 and 616 nm (metal-to-ligand charge transfer, 3MLCT). Lifetimes of 57.3 ps (2LMCT) for [Fe(mbmi)3](PF6)3 and 7.6 ps (3MLCT) for [Fe(mbmi)2(bpy)](PF6)2 were probed and are somewhat shorter than those for [Fe(btz)3](PF6)3 and [Fe(btz)2(bpy)](PF6)2. [Fe(mbmi)3](PF6)3 exhibits photoluminescence at 686 nm (2LMCT) in acetonitrile at room temperature with a quantum yield of (1.2 ± 0.1) × 10-4, compared to (3 ± 0.5) × 10-4 for [Fe(btz)3](PF6)3.

2.
J Chem Phys ; 160(7)2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38375904

RESUMEN

Photoredox properties of several earth-abundant light-harvesting transition metal complexes in combination with cobalt-based proton reduction catalysts have been investigated computationally to assess the fundamental viability of different photocatalytic systems of current experimental interest. Density functional theory (DFT) and time-dependent DFT (TD-DFT) calculations using several GGA (BP86, BLYP), hybrid-GGA (B3LYP, B3LYP*), hybrid meta-GGA (M06, TPSSh), and range-separated hybrid (ωB97X, CAM-B3LYP) functionals were used to calculate relevant ground and excited state reduction potentials for photosensitizers, catalysts, and sacrificial electron donors. Linear energy correction factors for the DFT/TD-DFT results that provide the best agreement with available experimental reference results were determined in order to provide more accurate predictions. Among the selection of functionals, the B3LYP* and TPSSh sets of correction parameters were determined to give the best redox potentials and excited states energies, ΔEexc, with errors of ∼0.2 eV. Linear corrections for both reduction and oxidation processes significantly improve the predictions for all the redox pairs. In particular, for TPSSh and B3LYP*, the calculated errors decrease by more than 0.5 V against experimental values for catalyst reduction potentials, photosensitizer oxidation potentials, and electron donor oxidation potentials. Energy-corrected TPSSh results were finally used to predict the energetics of complete photocatalytic cycles for the light-driven activation of selected proton reduction cobalt catalysts. These predictions demonstrate the broader usefulness of the adopted approach to systematically predict full photocycle behavior for first-row transition metal photosensitizer-catalyst combinations more broadly.

3.
Inorg Chem ; 61(44): 17515-17526, 2022 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-36279568

RESUMEN

Fe(III) complexes with N-heterocyclic carbene (NHC) ligands belong to the rare examples of Earth-abundant transition metal complexes with long-lived luminescent charge-transfer excited states that enable applications as photosensitizers for charge separation reactions. We report three new hexa-NHC complexes of this class: [Fe(brphtmeimb)2]PF6 (brphtmeimb = [(4-bromophenyl)tris(3-methylimidazol-2-ylidene)borate]-, [Fe(meophtmeimb)2]PF6 (meophtmeimb = [(4-methoxyphenyl)tris(3-methylimidazol-2-ylidene)borate]-, and [Fe(coohphtmeimb)2]PF6 (coohphtmeimb = [(4-carboxyphenyl)tris(3-methylimidazol-2-ylidene)borate]-. These were derived from the parent complex [Fe(phtmeimb)2]PF6 (phtmeimb = [phenyltris(3-methylimidazol-2-ylidene)borate]- by modification with electron-withdrawing and electron-donating substituents, respectively, at the 4-phenyl position of the ligand framework. All three Fe(III) hexa-NHC complexes were characterized by NMR spectroscopy, high-resolution mass spectroscopy, elemental analysis, single crystal X-ray diffraction analysis, electrochemistry, Mößbauer spectroscopy, electronic spectroscopy, magnetic susceptibility measurements, and quantum chemical calculations. Their ligand-to-metal charge-transfer (2LMCT) excited states feature nanosecond lifetimes (1.6-1.7 ns) and sizable emission quantum yields (1.7-1.9%) through spin-allowed transition to the doublet ground state (2GS), completely in line with the parent complex [Fe(phtmeimb)2]PF6 (2.0 ns and 2.1%). The integrity of the favorable excited state characteristics upon substitution of the ligand framework demonstrates the robustness of the scorpionate motif that tolerates modifications in the 4-phenyl position for applications such as the attachment in molecular or hybrid assemblies.

4.
Chem Sci ; 14(47): 13713-13721, 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-38075662

RESUMEN

Excited state evolution of the rhodium(iii) complex [Rh(iii)(phen)2(NH3)2]2+ (phen = 1,10-phenanthroline) has been investigated theoretically to gain a better understanding of light-driven activation of high-energy metal centered states. Ab initio molecular dynamics (AIMD) simulations show the significance of asymmetric motion on a multidimensional potential energy landscape around the metal center for activated crossover from triplet ligand centered (3LC) to triplet metal centered (3MC) states on picosecond timescales. Significant entropic differences arising from the structural distributions of the 3LC and 3MC states revealed by the simulations are found to favor the forward crossover process. Simulations at different temperatures provide further insight into the interplay between structural and electronic factors governing the 3LC → 3MC dynamics as a concerted two-electron energy transfer process, and the broader implications for photoinduced generation of high-energy 3MC states of interest for emerging photocatalytic applications are outlined.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA