Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Nano Lett ; 20(10): 7405-7412, 2020 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-32915579

RESUMEN

Iron oxide nanorings have great promise for biomedical applications because of their magnetic vortex state, which endows them with a low remanent magnetization while retaining a large saturation magnetization. Here we use micromagnetic simulations to predict the exact shapes that can sustain magnetic vortices, using a toroidal model geometry with variable diameter, ring thickness, and ring eccentricity. Our model phase diagram is then compared with simulations of experimental geometries obtained by electron tomography. High axial eccentricity and low ring thickness are found to be key factors for forming vortex states and avoiding net-magnetized metastable states. We also find that while defects from a perfect toroidal geometry increase the stray field associated with the vortex state, they can also make the vortex state more energetically accessible. These results constitute an important step toward optimizing the magnetic behavior of toroidal iron oxide nanoparticles.

2.
Earth Planets Space ; 71(1): 5, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30872945

RESUMEN

Pure magnetite experiences a first-order phase transition (the Verwey transition) near 120-125 K wherein the mineral's symmetry changes from cubic to monoclinic. This transformation results in the formation of fine-scale crystallographic twins and is accompanied by a profound change in magnetic properties. The Verwey transition is critical to a variety of applications in environmental magnetism and paleomagnetism because its expression is diagnostic for the presence of stoichiometric (or nearly stoichiometric) magnetite and cycling through the Verwey transition tends to remove the majority of multidomain magnetic remanence. Internal and external stresses demonstrably affect the onset of the Verwey transition. Dislocations create localized internal stress fields and have been cited as a possible source of an altered Verwey transition in deformed samples. To further investigate this behavior, a laboratory-deformed magnetite sample was examined inside a transmission electron microscope as it was cooled through the Verwey transition. Operating the microscope in the Fresnel mode of Lorentz microscopy enabled imaging of the interactions between dislocations, magnetic domain walls, and low-temperature crystallographic twin formation during the phase transition. To relate the observed changes to more readily measurable bulk sample magnetic behavior, low-temperature magnetic measurements were also taken using SQUID magnetometry. This study allows us, for the first time, to observe the Verwey transition in a defect-rich area. Dislocations, and their associated stress fields, impede the development of monoclinic magnetite twin structures during the phase transition and increase the remanence of a magnetite sample after cooling and warming through the Verwey transition.

3.
ACS Appl Electron Mater ; 4(9): 4427-4437, 2022 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-36185075

RESUMEN

Skyrmion-based devices have been proposed as a promising solution for low-energy data storage. These devices include racetrack or logic structures and require skyrmions to be confined in regions with dimensions comparable to the size of a single skyrmion. Here we examine skyrmions in FeGe device shapes using Lorentz transmission electron microscopy to reveal the consequences of skyrmion confinement in a device-like structure. Dumbbell-shaped elements were created by focused ion beam milling to provide regions where single skyrmions are confined adjacent to areas containing a skyrmion lattice. Simple block shapes of equivalent dimensions were also prepared to allow a direct comparison with skyrmion formation in a less complex, yet still confined, device geometry. The impact of applying a magnetic field and varying the temperature on the formation of skyrmions within the shapes was examined. This revealed that it is not just confinement within a small device structure that controls the position and number of skyrmions but that a complex device geometry changes the skyrmion behavior, including allowing skyrmions to form at lower applied magnetic fields than in simple shapes. The impact of edges in complex shapes is observed to be significant in changing the behavior of the magnetic textures formed. This could allow methods to be developed to control both the position and number of skyrmions within device structures.

4.
Adv Mater ; 31(16): e1806598, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30844122

RESUMEN

The intense research effort investigating magnetic skyrmions and their applications for spintronics has yielded reports of more exotic objects including the biskyrmion, which consists of a bound pair of counter-rotating vortices of magnetization. Biskyrmions have been identified only from transmission electron microscopy images and have not been observed by other techniques, nor seen in simulations carried out under realistic conditions. Here, quantitative Lorentz transmission electron microscopy, X-ray holography, and micromagnetic simulations are combined to search for biskyrmions in MnNiGa, a material in which they have been reported. Only type-I and type-II magnetic bubbles are found and images purported to show biskyrmions can be explained as type-II bubbles viewed at an angle to their axes. It is not the magnetization but the magnetic flux density resulting from this object that forms the counter-rotating vortices.

5.
Nature ; 420(6917): 797-800, 2002.
Artículo en Inglés | MEDLINE | ID: mdl-12490944

RESUMEN

Mixed-valent manganites are noted for their unusual magnetic, electronic and structural phase transitions. For example, the La(1-x)Ca(x)MnO(3) phase diagram shows that below transition temperatures in the range 100-260 K, compounds with 0.2 < x < 0.5 are ferromagnetic and metallic, whereas those with 0.5 < x < 0.9 are antiferromagnetic and charge ordered. In a narrow region around x = 0.5, these totally dissimilar ground states are thought to coexist. It has been shown that charge order and charge disorder can coexist in the related compound, La(0.25)Pr(0.375)Ca(0.375)MnO(3). Here we present electron microscopy data for La(0.5)Ca(0.5)MnO(3) that shed light on the distribution of these coexisting phases, and uncover an additional, unexpected phase. Using electron holography and Fresnel imaging, we find micrometre-sized ferromagnetic regions spanning several grains coexisting with similar-sized regions with no local magnetization. Holography shows that the ferromagnetic regions have a local magnetization of 3.4 +/- 0.2 Bohr magnetons per Mn atom (the spin-aligned value is 3.5 micro (B) per Mn). We use electron diffraction and dark-field imaging to show that charge order exists in regions with no net magnetization and, surprisingly, can also occur in ferromagnetic regions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA