Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Mol Imaging ; 17: 1536012118787322, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30039729

RESUMEN

Reseeding of decellularized organ scaffolds with a patient's own cells has promise for eliminating graft versus host disease. This study investigated whether ultrasound imaging or magnetic resonance imaging (MRI) can track the reseeding of murine liver scaffolds with silica-labeled or iron-labeled liver hepatocytes. Mesoporous silica particles were created using the Stöber method, loaded with Alexa Flour 647 fluorophore, and conjugated with protamine sulfate, glutamine, and glycine. Fluorescent iron oxide particles were obtained from a commercial source. Liver cells from donor mice were loaded with the silica particles or iron oxide particles. Donor livers were decellularized and reperfused with silica-labeled or iron-labeled cells. The reseeded livers were longitudinally analyzed with ultrasound imaging and MRI. Liver biopsies were imaged with confocal microscopy and scanning electron microscopy. Ultrasound imaging had a detection limit of 0.28 mg/mL, while MRI had a lower detection limit of 0.08 mg/mL based on particle weight. The silica-loaded cells proliferated at a slower rate compared to iron-loaded cells. Ultrasound imaging, MRI, and confocal microscopy underestimated cell numbers relative to scanning electron microscopy. Ultrasound imaging had the greatest underestimation due to coarse resolution compared to the other imaging modalities. Despite this underestimation, both ultrasound imaging and MRI successfully tracked the longitudinal recellularization of liver scaffolds.


Asunto(s)
Compuestos Férricos/química , Hígado/metabolismo , Dióxido de Silicio/química , Animales , Hígado/citología , Hígado/diagnóstico por imagen , Hígado/ultraestructura , Imagen por Resonancia Magnética , Ratones SCID , Ultrasonografía
2.
Pulm Circ ; 7(2): 494-504, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28597777

RESUMEN

Lungs donated after cardiac death (DCD) are an underutilized resource for a dwindling donor lung transplant pool. Our study investigates the potential of a novel preservation solution, Somah, to better preserve statically stored DCD lungs, for an extended time period, when compared to low-potassium dextran solution (LPD). We hypothesize that Somah is a metabolically superior organ preservation solution for hypothermic statically stored porcine DCD lungs, possibly improving lung transplant outcomes. Porcine DCD lungs (n = 3 per group) were flushed with and submerged in cold preservation solution. The lungs were stored up to 12 h, and samples were taken from lung tissue and the preservation medium throughout. Metabolomic and redox potential were analyzed using high performance liquid chromatography, mass spectrometry, and RedoxSYS®, comparing substrate and pathway utilization in both preservation solutions. Glutathione reduction was seen in Somah but not in LPD during preservation. Carnitine, carnosine, and n-acetylcarnosine levels were elevated in the Somah medium compared with LPD throughout. Biopsies of Somah exposed lungs demonstrated similar trends after 2 h, up to 12 h. Adenosine gradually decreased in Somah medium over 12 h, but not in LPD. An inversely proportional increase in inosine was found in Somah. Higher oxidative stress levels were measured in LPD. Our study suggests suboptimal metabolic preservation in lungs stored in LPD. LPD had poor antioxidant potential, cytoprotection, and an insufficient redox potential. These findings may have immediate clinical implications for human organs; however, further investigation is needed to evaluate DCD lung preservation in Somah as a viable option for transplant.

3.
ASAIO J ; 61(1): 71-7, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25303798

RESUMEN

To regenerate discarded lungs that would not normally be used for transplant, ex vivo reseeding after decellularization may produce organs suitable for clinical transplantation and therefore close the donor gap. Organ regenerative control acquisition (Harvard Biosciences, Holliston, MA), a novel bioreactor system that simulates physiological conditions, was used to evaluate a method of rapid decellularization. Although most current decellularization methods are 24-72 hours, we hypothesized that perfusing porcine lungs with detergents at higher pressures for less time would yield comparable bioscaffolds suitable for future experimentation. Methods involved perfusion of 1% Triton X-100 (Triton) and 0.1% sodium dodecyl sulfate at varied physiological flow rates. Architecture of native and decellularized lungs was analyzed with hematoxylin and eosin (H&E) staining, transmission electron microscopy (TEM), and scanning electron microscopy (SEM). Dry gas and liquid ventilation techniques were introduced. Our 7 hour decellularization procedure removes nuclear material while maintaining architecture. Bioscaffolds have the microarchitecture for reseeding of stem cells. Hematoxylin and eosin staining suggested removal of nuclear material, whereas SEM and TEM imaging demonstrated total removal of cells with structural architecture preserved. This process can lead to clinical implementation, thereby increasing the availability of human lungs for transplantation.


Asunto(s)
Órganos Bioartificiales , Pulmón/citología , Andamios del Tejido , Animales , Reactores Biológicos , ADN/análisis , Humanos , Pulmón/fisiología , Trasplante de Pulmón , Microscopía Electrónica de Rastreo , Microscopía Electrónica de Transmisión , Regeneración/fisiología , Sus scrofa , Ingeniería de Tejidos/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA