Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Proc Natl Acad Sci U S A ; 118(45)2021 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-34740966

RESUMEN

Cerebellar Purkinje neurons integrate information transmitted at excitatory synapses formed by granule cells. Although these synapses are considered essential sites for learning, most of them appear not to transmit any detectable electrical information and have been defined as silent. It has been proposed that silent synapses are required to maximize information storage capacity and ensure its reliability, and hence to optimize cerebellar operation. Such optimization is expected to occur once the cerebellar circuitry is in place, during its maturation and the natural and steady improvement of animal agility. We therefore investigated whether the proportion of silent synapses varies over this period, from the third to the sixth postnatal week in mice. Selective expression of a calcium indicator in granule cells enabled quantitative mapping of presynaptic activity, while postsynaptic responses were recorded by patch clamp in acute slices. Through this approach and the assessment of two anatomical features (the distance that separates adjacent planar Purkinje dendritic trees and the synapse density), we determined the average excitatory postsynaptic potential per synapse. Its value was four to eight times smaller than responses from paired recorded detectable connections, consistent with over 70% of synapses being silent. These figures remained remarkably stable across maturation stages. According to the proposed role for silent synapses, our results suggest that information storage capacity and reliability are optimized early during cerebellar maturation. Alternatively, silent synapses may have roles other than adjusting the information storage capacity and reliability.


Asunto(s)
Cerebelo/crecimiento & desarrollo , Animales , Señalización del Calcio , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos ICR , Ratones Transgénicos , Células de Purkinje/fisiología , Sinapsis/fisiología
2.
EMBO Rep ; 18(9): 1509-1520, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28684399

RESUMEN

In many cell types, mitotic spindle orientation relies on the canonical "LGN complex" composed of Pins/LGN, Mud/NuMA, and Gαi subunits. Membrane localization of this complex recruits motor force generators that pull on astral microtubules to orient the spindle. Drosophila Pins shares highly conserved functional domains with its two vertebrate homologs LGN and AGS3. Whereas the role of Pins and LGN in oriented divisions is extensively documented, involvement of AGS3 remains controversial. Here, we show that AGS3 is not required for planar divisions of neural progenitors in the mouse neocortex. AGS3 is not recruited to the cell cortex and does not rescue LGN loss of function. Despite conserved interactions with NuMA and Gαiin vitro, comparison of LGN and AGS3 functional domains in vivo reveals unexpected differences in the ability of these interactions to mediate spindle orientation functions. Finally, we find that Drosophila Pins is unable to substitute for LGN loss of function in vertebrates, highlighting that species-specific modulations of the interactions between components of the Pins/LGN complex are crucial in vivo for spindle orientation.


Asunto(s)
Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Proteínas de Drosophila/metabolismo , Inhibidores de Disociación de Guanina Nucleótido/metabolismo , Huso Acromático/metabolismo , Animales , Proteínas Portadoras/química , Proteínas de Ciclo Celular , División Celular , Polaridad Celular , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Inhibidores de Disociación de Guanina Nucleótido/química , Inhibidores de Disociación de Guanina Nucleótido/genética , Ratones , Microtúbulos/metabolismo , Neocórtex/fisiología , Proteínas Nucleares/metabolismo , Unión Proteica , Dominios Proteicos , Huso Acromático/genética
3.
Nat Methods ; 9(8): 815-8, 2012 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-22772730

RESUMEN

We achieve simultaneous two-photon excitation of three chromophores with distinct absorption spectra using synchronized pulses from a femtosecond laser and an optical parametric oscillator. The two beams generate separate multiphoton processes, and their spatiotemporal overlap provides an additional two-photon excitation route, with submicrometer overlay of the color channels. We report volume and live multicolor imaging of 'Brainbow'-labeled tissues as well as simultaneous three-color fluorescence and third-harmonic imaging of fly embryos.


Asunto(s)
Color , Microscopía de Fluorescencia por Excitación Multifotónica/métodos , Fotones , Animales , Corteza Cerebral/citología , Drosophila melanogaster/citología , Drosophila melanogaster/embriología , Fluorescencia , Rayos Láser , Ratones , Factores de Tiempo
4.
Dev Cell ; 59(3): 339-350.e4, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38198889

RESUMEN

Congenital heart malformations include mitral valve defects, which remain largely unexplained. During embryogenesis, a restricted population of endocardial cells within the atrioventricular canal undergoes an endothelial-to-mesenchymal transition to give rise to mitral valvular cells. However, the identity and fate decisions of these progenitors as well as the behavior and distribution of their derivatives in valve leaflets remain unknown. We used single-cell RNA sequencing (scRNA-seq) of genetically labeled endocardial cells and microdissected mouse embryonic and postnatal mitral valves to characterize the developmental road. We defined the metabolic processes underlying the specification of the progenitors and their contributions to subtypes of valvular cells. Using retrospective multicolor clonal analysis, we describe specific modes of growth and behavior of endocardial cell-derived clones, which build up, in a proper manner, functional valve leaflets. Our data identify how both genetic and metabolic mechanisms specifically drive the fate of a subset of endocardial cells toward their distinct clonal contribution to the formation of the valve.


Asunto(s)
Desarrollo Embrionario , Válvula Mitral , Animales , Ratones , Válvula Mitral/anomalías , Válvula Mitral/metabolismo , Estudios Retrospectivos , Diferenciación Celular
5.
PLoS Biol ; 7(8): e1000176, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19688041

RESUMEN

During embryogenesis, the neural stem cells (NSC) of the developing cerebral cortex are located in the ventricular zone (VZ) lining the cerebral ventricles. They exhibit apical and basal processes that contact the ventricular surface and the pial basement membrane, respectively. This unique architecture is important for VZ physical integrity and fate determination of NSC daughter cells. In addition, the shorter apical process is critical for interkinetic nuclear migration (INM), which enables VZ cell mitoses at the ventricular surface. Despite their importance, the mechanisms required for NSC adhesion to the ventricle are poorly understood. We have shown previously that one class of candidate adhesion molecules, laminins, are present in the ventricular region and that their integrin receptors are expressed by NSC. However, prior studies only demonstrate a role for their interaction in the attachment of the basal process to the overlying pial basement membrane. Here we use antibody-blocking and genetic experiments to reveal an additional and novel requirement for laminin/integrin interactions in apical process adhesion and NSC regulation. Transient abrogation of integrin binding and signalling using blocking antibodies to specifically target the ventricular region in utero results in abnormal INM and alterations in the orientation of NSC divisions. We found that these defects were also observed in laminin alpha2 deficient mice. More detailed analyses using a multidisciplinary approach to analyse stem cell behaviour by expression of fluorescent transgenes and multiphoton time-lapse imaging revealed that the transient embryonic disruption of laminin/integrin signalling at the VZ surface resulted in apical process detachment from the ventricular surface, dystrophic radial glia fibers, and substantial layering defects in the postnatal neocortex. Collectively, these data reveal novel roles for the laminin/integrin interaction in anchoring embryonic NSCs to the ventricular surface and maintaining the physical integrity of the neocortical niche, with even transient perturbations resulting in long-lasting cortical defects.


Asunto(s)
Ventrículos Cerebrales , Regulación del Desarrollo de la Expresión Génica , Cadenas beta de Integrinas/metabolismo , Neocórtex/embriología , Transducción de Señal , Células Madre/citología , Animales , Adhesión Celular , Diferenciación Celular , Ventrículos Cerebrales/citología , Ventrículos Cerebrales/embriología , Ventrículos Cerebrales/fisiología , Embrión de Mamíferos , Procesamiento de Imagen Asistido por Computador , Cadenas beta de Integrinas/genética , Laminina/genética , Laminina/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos ICR , Neocórtex/citología , Neocórtex/metabolismo , Neuronas/citología , Neuronas/metabolismo
6.
Front Neurosci ; 16: 916055, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36177355

RESUMEN

In the mammalian brain, astrocytes form a heterogeneous population at the morphological, molecular, functional, intra-, and inter-region levels. In the past, a few types of astrocytes have been first described based on their morphology and, thereafter, according to limited key molecular markers. With the advent of bulk and single-cell transcriptomics, the diversity of astrocytes is now progressively deciphered and its extent better appreciated. However, the origin of this diversity remains unresolved, even though many recent studies unraveled the specificities of astroglial development at both population and individual cell levels, particularly in the cerebral cortex. Despite the lack of specific markers for each astrocyte subtype, a better understanding of the cellular and molecular events underlying cortical astrocyte diversity is nevertheless within our reach thanks to the development of intersectional lineage tracing, microdissection, spatial mapping, and single-cell transcriptomic tools. Here we present a brief overview describing recent findings on the genesis and maturation of astrocytes and their key regulators during cerebral cortex development. All these studies have considerably advanced our knowledge of cortical astrogliogenesis, which relies on a more complex mode of development than their neuronal counterparts, that undeniably impact astrocyte diversity in the cerebral cortex.

7.
Cell Rep ; 32(3): 107934, 2020 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-32697983

RESUMEN

Calcium is a second messenger crucial to a myriad of cellular processes ranging from regulation of metabolism and cell survival to vesicle release and motility. Current strategies to directly manipulate endogenous calcium signals lack cellular and subcellular specificity. We introduce SpiCee, a versatile and genetically encoded chelator combining low- and high-affinity sites for calcium. This scavenger enables altering endogenous calcium signaling and functions in single cells in vitro and in vivo with biochemically controlled subcellular resolution. SpiCee paves the way to investigate local calcium signaling in vivo and directly manipulate this second messenger for therapeutic use.


Asunto(s)
Calcio/metabolismo , Técnicas Genéticas , Adenosina Trifosfato/metabolismo , Animales , Señalización del Calcio/efectos de los fármacos , Muerte Celular/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Quelantes/farmacología , Células HEK293 , Humanos , Ratones Endogámicos C57BL , Neuronas/citología , Neuronas/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Fracciones Subcelulares/metabolismo , Tapsigargina/farmacología
8.
J Vis Exp ; (159)2020 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-32510512

RESUMEN

Protoplasmic astrocytes (PrA) located in the mouse cerebral cortex are tightly juxtaposed, forming an apparently continuous three-dimensional matrix at adult stages. Thus far, no immunostaining strategy can single them out and segment their morphology in mature animals and over the course of corticogenesis. Cortical PrA originate from progenitors located in the dorsal pallium and can easily be targeted using in utero electroporation of integrative vectors. A protocol is presented here to label these cells with the multiaddressable genome-integrating color (MAGIC) Markers strategy, which relies on piggyBac/Tol2 transposition and Cre/lox recombination to stochastically express distinct fluorescent proteins (blue, cyan, yellow, and red) addressed to specific subcellular compartments. This multicolor fate mapping strategy enables to mark in situ nearby cortical progenitors with combinations of color markers prior to the start of gliogenesis and to track their descendants, including astrocytes, from embryonic to adult stages at the individual cell level. Semi-sparse labeling achieved by adjusting the concentration of electroporated vectors and color contrasts provided by the Multiaddressable Genome-Integrating Color Markers (MAGIC Markers or MM) enable to individualize astrocytes and single out their territory and complex morphology despite their dense anatomical arrangement. Presented here is a comprehensive experimental workflow including the details of the electroporation procedure, multichannel image stacks acquisition by confocal microscopy, and computer-assisted three-dimensional segmentation that will enable the experimenter to assess individual PrA volume and morphology. In summary, electroporation of MAGIC Markers provides a convenient method to individually label numerous astrocytes and gain access to their anatomical features at different developmental stages. This technique will be useful to analyze cortical astrocyte morphological properties in various mouse models without resorting to complex crosses with transgenic reporter lines.


Asunto(s)
Astrocitos/citología , Corteza Cerebral/citología , Electroporación/métodos , Animales , Color , Femenino , Ratones , Neurogénesis
9.
Neuron ; 107(4): 617-630.e6, 2020 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-32559415

RESUMEN

Stable genomic integration of exogenous transgenes is essential in neurodevelopmental and stem cell studies. Despite tools driving increasingly efficient genomic insertion with DNA vectors, transgenesis remains fundamentally hindered by the impossibility of distinguishing integrated from episomal transgenes. Here, we introduce an integration-coupled On genetic switch, iOn, which triggers gene expression upon incorporation into the host genome through transposition, thus enabling rapid and accurate identification of integration events following transfection with naked plasmids. In vitro, iOn permits rapid drug-free stable transgenesis of mouse and human pluripotent stem cells with multiple vectors. In vivo, we demonstrate faithful cell lineage tracing, assessment of regulatory elements, and mosaic analysis of gene function in somatic transgenesis experiments that reveal neural progenitor potentialities and interaction. These results establish iOn as a universally applicable strategy to accelerate and simplify genetic engineering in cultured systems and model organisms by conditioning transgene activation to genomic integration.


Asunto(s)
Expresión Génica , Técnicas de Transferencia de Gen , Células-Madre Neurales , Transgenes , Animales , Linaje de la Célula , Vectores Genéticos , Humanos , Ratones
10.
Stem Cells ; 26(9): 2311-20, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-18617686

RESUMEN

The adult subventricular zone (SVZ) supports neural stem cell self-renewal and differentiation and continually gives rise to new neurons throughout adult life. The mechanisms orienting the migration of neuroblasts from the SVZ to the olfactory bulb (OB) via the rostral migratory stream (RMS) have been extensively studied, but factors controlling neuroblast exit from the SVZ remain poorly explored. The morphogen Sonic Hedgehog (Shh) displays proliferative and survival activities toward neural stem cells and is an axonal chemoattractant implicated in guidance of commissural axons during development. We identify here the presence of Shh protein in SVZ extracts and in the cerebrospinal fluid of adult mice, and we demonstrate that migrating neuroblasts in the SVZ and RMS express the Shh receptor Patched. We show that Shh displays a chemoattractive activity in vitro on SVZ-derived neuronal progenitors, an effect blocked by Cur61414, a Smoothened antagonist. Interestingly, Shh-expressing cells grafted above the RMS of adult mice exert a chemoattractive activity on migrating neuroblasts in vivo, thus inducing their accumulation and deviation from their normal migratory pathway. Furthermore, the adenoviral transfer of Shh into the lateral ventricle or the blocking of Shh present in the SVZ of adult mice using its physiological antagonist Hedgehog interacting protein or neutralizing Shh antibodies provides in vivo evidence that Shh can retain SVZ-derived neuroblasts. The ability to modulate the number of neuroblasts leaving the SVZ and reaching the OB through the chemoattractive activity of Shh suggests a novel degree of plasticity in cell migration of this adult stem cell niche.


Asunto(s)
Encéfalo/citología , Quimiotaxis , Proteínas Hedgehog/fisiología , Neuronas/fisiología , Células Madre/fisiología , Animales , Encéfalo/metabolismo , Células Cultivadas , Dioxoles/farmacología , Proteínas Hedgehog/líquido cefalorraquídeo , Proteínas Hedgehog/metabolismo , Masculino , Ratones , Neuronas/citología , Bulbo Olfatorio/citología , Receptores Patched , Piperazinas/farmacología , Receptores de Superficie Celular/biosíntesis , Receptores Acoplados a Proteínas G/antagonistas & inhibidores , Receptores Acoplados a Proteínas G/fisiología , Receptor Smoothened , Células Madre/citología
11.
Nat Commun ; 10(1): 4884, 2019 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-31653848

RESUMEN

Astrocytes play essential roles in the neural tissue where they form a continuous network, while displaying important local heterogeneity. Here, we performed multiclonal lineage tracing using combinatorial genetic markers together with a new large volume color imaging approach to study astrocyte development in the mouse cortex. We show that cortical astrocyte clones intermix with their neighbors and display extensive variability in terms of spatial organization, number and subtypes of cells generated. Clones develop through 3D spatial dispersion, while at the individual level astrocytes acquire progressively their complex morphology. Furthermore, we find that the astroglial network is supplied both before and after birth by ventricular progenitors that scatter in the neocortex and can give rise to protoplasmic as well as pial astrocyte subtypes. Altogether, these data suggest a model in which astrocyte precursors colonize the neocortex perinatally in a non-ordered manner, with local environment likely determining astrocyte clonal expansion and final morphotype.


Asunto(s)
Astrocitos/citología , Diferenciación Celular , Corteza Cerebral/citología , Animales , Astrocitos/metabolismo , Linaje de la Célula , Plasticidad de la Célula , Proliferación Celular , Células Clonales/citología , Ratones
12.
Cell Rep ; 27(13): 4003-4012.e6, 2019 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-31242429

RESUMEN

cGMP is critical to a variety of cellular processes, but the available tools to interfere with endogenous cGMP lack cellular and subcellular specificity. We introduce SponGee, a genetically encoded chelator of this cyclic nucleotide that enables in vitro and in vivo manipulations in single cells and in biochemically defined subcellular compartments. SponGee buffers physiological changes in cGMP concentration in various model systems while not affecting cAMP signals. We provide proof-of-concept strategies by using this tool to highlight the role of cGMP signaling in vivo and in discrete subcellular domains. SponGee enables the investigation of local cGMP signals in vivo and paves the way for therapeutic strategies that prevent downstream signaling activation.


Asunto(s)
GMP Cíclico/metabolismo , Modelos Biológicos , Sistemas de Mensajero Secundario/fisiología , Animales , AMP Cíclico/genética , AMP Cíclico/metabolismo , GMP Cíclico/genética , Ratones , Ratas , Ratas Sprague-Dawley
13.
Nat Commun ; 10(1): 1662, 2019 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-30971684

RESUMEN

Large-scale microscopy approaches are transforming brain imaging, but currently lack efficient multicolor contrast modalities. We introduce chromatic multiphoton serial (ChroMS) microscopy, a method integrating one-shot multicolor multiphoton excitation through wavelength mixing and serial block-face image acquisition. This approach provides organ-scale micrometric imaging of spectrally distinct fluorescent proteins and label-free nonlinear signals with constant micrometer-scale resolution and sub-micron channel registration over the entire imaged volume. We demonstrate tridimensional (3D) multicolor imaging over several cubic millimeters as well as brain-wide serial 2D multichannel imaging. We illustrate the strengths of this method through color-based 3D analysis of astrocyte morphology and contacts in the mouse cerebral cortex, tracing of individual pyramidal neurons within densely Brainbow-labeled tissue, and multiplexed whole-brain mapping of axonal projections labeled with spectrally distinct tracers. ChroMS will be an asset for multiscale and system-level studies in neuroscience and beyond.


Asunto(s)
Corteza Cerebral/diagnóstico por imagen , Imagenología Tridimensional/métodos , Proteínas Luminiscentes/química , Microscopía de Fluorescencia por Excitación Multifotónica/métodos , Neuroimagen/métodos , Animales , Astrocitos/metabolismo , Corteza Cerebral/citología , Color , Dependovirus , Femenino , Vectores Genéticos/administración & dosificación , Vectores Genéticos/genética , Células HEK293 , Humanos , Proteínas Luminiscentes/genética , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Modelos Animales , Nestina/genética , Técnicas de Trazados de Vías Neuroanatómicas/métodos , Parvovirinae/genética , Células Piramidales/metabolismo , Transfección
14.
Nat Commun ; 10(1): 2160, 2019 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-31073140

RESUMEN

Affiliation 4 incorrectly read 'University of the Basque Country (Ikerbasque), University of the Basque Country and Donostia International Physics Center, San Sebastian 20018, Spain.'Also, the affiliations of Ignacio Arganda-Carreras with 'IKERBASQUE, Basque Foundation for Science, Bilbao, 48013, Spain' and 'Donostia International Physics Center (DIPC), San Sebastian, 20018, Spain' were inadvertently omitted.Additionally, the third sentence of the first paragraph of the Results section entitled 'Multicontrast organ-scale imaging with ChroMS microscopy' incorrectly read 'For example, one can choose lambda1 = 850 and lambda2 = 110 nm for optimal two-photon excitation of blue and red chromophores.'. The correct version reads 'lambda2 = 1100 nm' instead of 'lambda2 = 110 nm'. These errors have now been corrected in the PDF and HTML versions of the Article.

15.
Nat Neurosci ; 5(10): 939-45, 2002 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-12244323

RESUMEN

During development, Reelin acts on migrating neuronal precursors and controls correct cell positioning in the cortex and other brain structures by a hitherto unidentified mechanism. Here we show that in the postnatal mouse brain, Reelin acts as a detachment signal for chain-migrating interneuron precursors in the olfactory bulb. Neuronal precursors cultured in Matrigel detached from chains and migrated individually in the presence of exogenously added Reelin protein or Reelin-expressing brain tissues. Furthermore, we found that in reeler mutant mice, neuronal precursors accumulated in the olfactory bulb and remained in clusters, indicating that they did not change from tangential chain-migration to radial individual migration. Our data provide direct evidence that Reelin acts as a detachment signal, but not a stop or guidance cue. We propose that Reelin may have comparable functions during development.


Asunto(s)
Animales Recién Nacidos/fisiología , Moléculas de Adhesión Celular Neuronal/fisiología , Proteínas de la Matriz Extracelular/fisiología , Neuronas/citología , Neuronas/metabolismo , Transducción de Señal/fisiología , Animales , Animales Recién Nacidos/genética , Trasplante de Tejido Encefálico/métodos , Células COS , Moléculas de Adhesión Celular Neuronal/biosíntesis , Moléculas de Adhesión Celular Neuronal/genética , Diferenciación Celular/genética , Diferenciación Celular/fisiología , Movimiento Celular/fisiología , Técnicas de Cocultivo , Proteínas de la Matriz Extracelular/biosíntesis , Proteínas de la Matriz Extracelular/genética , Regulación del Desarrollo de la Expresión Génica/fisiología , Ventrículos Laterales/trasplante , Ratones , Ratones Endogámicos BALB C , Ratones Mutantes Neurológicos , Ratones Transgénicos , Proteínas del Tejido Nervioso , Prosencéfalo/citología , Prosencéfalo/metabolismo , Proteína Reelina , Serina Endopeptidasas
16.
Light Sci Appl ; 7: 12, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30839589

RESUMEN

Multiphoton microscopy combined with genetically encoded fluorescent indicators is a central tool in biology. Three-photon (3P) microscopy with excitation in the short-wavelength infrared (SWIR) water transparency bands at 1.3 and 1.7 µm opens up new opportunities for deep-tissue imaging. However, novel strategies are needed to enable in-depth multicolor fluorescence imaging and fully develop such an imaging approach. Here, we report on a novel multiband SWIR source that simultaneously emits ultrashort pulses at 1.3 and 1.7 µm that has characteristics optimized for 3P microscopy: sub-70 fs duration, 1.25 MHz repetition rate, and µJ-range pulse energy. In turn, we achieve simultaneous 3P excitation of green fluorescent protein (GFP) and red fluorescent proteins (mRFP, mCherry, tdTomato) along with third-harmonic generation. We demonstrate in-depth dual-color 3P imaging in a fixed mouse brain, chick embryo spinal cord, and live adult zebrafish brain, with an improved signal-to-background ratio compared to multicolor two-photon imaging. This development opens the way towards multiparametric imaging deep within scattering tissues.

17.
Neuroreport ; 16(17): 1959-62, 2005 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-16272887

RESUMEN

Hedgehog interacting protein (Hip) and Patched 1 (Ptc1) regulate the cell responses to the morphogen Sonic Hedgehog (Shh). Here, we compare the relative expression patterns of Shh, Hip and Ptc1 transcripts in the E13.5 mouse brain embryo. We observe that the expression of Hip and Ptc1 often overlaps and is found close to Shh-expressing cells, suggesting that both proteins are required for controlling Shh signals. In the adult striatum in which Ptc1 is not detected, we show that a majority of Hip-expressing cells correspond to neurons expressing the neuronal form of nitric oxide synthase. These data raise the hypothesis for a functional link between nitric oxide and Shh signaling and for a nonredundant role of Hip and Ptc1 in the adult brain.


Asunto(s)
Proteínas Portadoras/genética , Cuerpo Estriado/embriología , Cuerpo Estriado/fisiología , Regulación del Desarrollo de la Expresión Génica , Glicoproteínas de Membrana/genética , Óxido Nítrico Sintasa de Tipo I/metabolismo , Óxido Nítrico/metabolismo , Factores de Edad , Animales , Elementos sin Sentido (Genética) , Proteínas Portadoras/metabolismo , Proteínas Hedgehog , Glicoproteínas de Membrana/metabolismo , Ratones , Óxido Nítrico Sintasa de Tipo I/genética , Receptores Patched , Receptor Patched-1 , ARN Mensajero/análisis , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/metabolismo , Transducción de Señal/fisiología , Transactivadores/genética , Transactivadores/metabolismo
18.
Neuron ; 81(3): 505-20, 2014 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-24507188

RESUMEN

We present a method to label and trace the lineage of multiple neural progenitors simultaneously in vertebrate animals via multiaddressable genome-integrative color (MAGIC) markers. We achieve permanent expression of combinatorial labels from new Brainbow transgenes introduced in embryonic neural progenitors with electroporation of transposon vectors. In the mouse forebrain and chicken spinal cord, this approach allows us to track neural progenitor's descent during pre- and postnatal neurogenesis or perinatal gliogenesis in long-term experiments. Color labels delineate cytoarchitecture, resolve spatially intermixed clones, and specify the lineage of astroglial subtypes and adult neural stem cells. Combining colors and subcellular locations provides an expanded marker palette to individualize clones. We show that this approach is also applicable to modulate specific signaling pathways in a mosaic manner while color-coding the status of individual cells regarding induced molecular perturbations. This method opens new avenues for clonal and functional analysis in varied experimental models and contexts.


Asunto(s)
Encéfalo/citología , Linaje de la Célula/fisiología , Neuroglía/fisiología , Neuronas/fisiología , Médula Espinal/citología , Células Madre/fisiología , Factores de Edad , Animales , Animales Recién Nacidos , Encéfalo/embriología , Encéfalo/crecimiento & desarrollo , Diferenciación Celular/fisiología , Movimiento Celular/fisiología , Embrión de Pollo , Colorimetría , Electroporación , Embrión de Mamíferos , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Ratones , Ratones Transgénicos , Neurogénesis/fisiología , Médula Espinal/embriología , Células Madre/citología , Factores de Tiempo , Transposasas/fisiología
19.
Curr Biol ; 23(1): 21-31, 2013 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-23177476

RESUMEN

BACKGROUND: The cleavage-stage mouse embryo is composed of superficially equivalent blastomeres that will generate both the embryonic inner cell mass (ICM) and the supportive trophectoderm (TE). However, it remains unsettled whether the contribution of each blastomere to these two lineages can be accounted for by chance. Addressing the question of blastomere cell fate may be of practical importance, because preimplantation genetic diagnosis requires removal of blastomeres from the early human embryo. To determine whether blastomere allocation to the two earliest lineages is random, we developed and utilized a recombination-mediated, noninvasive combinatorial fluorescent labeling method for embryonic lineage tracing. RESULTS: When we induced recombination at cleavage stages, we observed a statistically significant bias in the contribution of the resulting labeled clones to the trophectoderm or the inner cell mass in a subset of embryos. Surprisingly, we did not find a correlation between localization of clones in the embryonic and abembryonic hemispheres of the late blastocyst and their allocation to the TE and ICM, suggesting that TE-ICM bias arises separately from embryonic-abembryonic bias. Rainbow lineage tracing also allowed us to demonstrate that the bias observed in the blastocyst persists into postimplantation stages and therefore has relevance for subsequent development. CONCLUSIONS: The Rainbow transgenic mice that we describe here have allowed us to detect lineage-dependent bias in early development. They should also enable assessment of the developmental equivalence of mammalian progenitor cells in a variety of tissues.


Asunto(s)
Blastómeros/citología , Desarrollo Embrionario , Animales , Blastómeros/fisiología , Linaje de la Célula , Femenino , Proteínas Luminiscentes/análisis , Masculino , Ratones , Ratones Transgénicos , Recombinación Genética , Proteína Fluorescente Roja
20.
J Neurochem ; 98(2): 530-42, 2006 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-16805844

RESUMEN

Sonic hedgehog signaling is required for the maintenance of stem cell niches in the postnatal subventricular zone and the proliferation of neural progenitors in the mature hippocampus. We show here that delivery of Sonic hedgehog protein into the lateral ventricle of adult mice increases cell proliferation in the corpus callosum and cerebral cortex. In this latter area, the number of neural progenitors expressing the proteoglycan NG2 is enhanced 2 days after the injection. In both areas, mRNA up-regulation of the transcriptional target gene Patched was observed in cells expressing the oligodendroglial transcription factor Olig1. Twenty-six days following the adenovirus-mediated delivery of Sonic hedgehog into the lateral ventricle, newly generated cells in the cerebral cortex and in the corpus callosum are influenced towards the initial steps of oligodendrogenesis, as indicated by a 50% increase in the number of cells expressing the oligodendroglial marker DM20. Our experiments demonstrate that the number of oligodendrocyte precursor cells in the cerebral cortex and corpus callosum can be increased upon delivery of Sonic hedgehog proteins and highlight the potential capacity of the adult brain to mobilize a pool of premyelinating cells.


Asunto(s)
Ventrículos Laterales/fisiología , Oligodendroglía/efectos de los fármacos , Transactivadores/farmacología , Adenoviridae/genética , Animales , Antimetabolitos , Bromodesoxiuridina , Recuento de Células , Proliferación Celular/efectos de los fármacos , Vectores Genéticos , Proteínas Hedgehog , Inmunohistoquímica , Inyecciones Intraventriculares , Masculino , Ratones , Microinyecciones , Proteínas Recombinantes/metabolismo , Transducción de Señal/fisiología , Células Madre/efectos de los fármacos , Técnicas Estereotáxicas , Transactivadores/administración & dosificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA