Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Clin Immunol ; 246: 109180, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36396013

RESUMEN

Borrelia burgdorferi (Bb) infection causes Lyme disease, for which there is need for more effective therapies. Here, we sequenced the antibody repertoire of plasmablasts in Bb-infected humans. We expressed recombinant monoclonal antibodies (mAbs) representing the identified plasmablast clonal families, and identified their binding specificities. Our recombinant anti-Bb mAbs exhibit a range of activity in mediating macrophage phagocytosis of Bb. To determine if we could increase the macrophage phagocytosis-promoting activity of our anti-Bb mAbs, we generated a TLR9-agonist CpG-oligo-conjugated anti-BmpA mAb. We demonstrated that our CpG-conjugated anti-BmpA mAb exhibited increased peak Bb phagocytosis at 12-24 h, and sustained macrophage phagocytosis over 60+ hrs. Further, our CpG-conjugated anti-BmpA mAb induced macrophages to exhibit a sustained activation morphology. Our findings demonstrate the potential for TLR9-agonist CpG-oligo conjugates to enhance mAb-mediated clearance of Bb, and this approach might also enhance the activity of other anti-microbial mAbs.


Asunto(s)
Borrelia burgdorferi , Enfermedad de Lyme , Humanos , Borrelia burgdorferi/metabolismo , Receptor Toll-Like 9/metabolismo , Macrófagos , Enfermedad de Lyme/metabolismo , Anticuerpos Monoclonales/farmacología , Anticuerpos Monoclonales/metabolismo
2.
Ann Rheum Dis ; 82(3): 357-364, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36241361

RESUMEN

OBJECTIVES: Myeloablative autologous haematopoietic stem cell transplant (HSCT) was recently demonstrated to provide significant benefit over cyclophosphamide (CYC) in the treatment of diffuse cutaneous systemic sclerosis (dcSSc) in the Scleroderma: Cyclophosphamide or Transplantation (SCOT) trial. As dysregulation of the B cell compartment has previously been described in dcSSc, we sought to gain insight into the effects of myeloablative autologous HSCT as compared with CYC. METHODS: We sequenced the peripheral blood immunoglobulin heavy chain (IGH) repertoires in patients with dcSSc enrolled in the SCOT trial. RESULTS: Myeloablative autologous HSCT was associated with a sustained increase in IgM isotype antibodies bearing a low mutation rate. Clonal expression was reduced in IGH repertoires following myeloablative autologous HSCT. Additionally, we identified a underusage of immunoglobulin heavy chain V gene 5-51 in patients with dcSSc, and usage normalised following myeloablative autologous HSCT but not CYC treatment. CONCLUSIONS: Together, these findings suggest that myeloablative autologous HSCT resets the IGH repertoire to a more naïve state characterised by IgM-expressing B cells, providing a possible mechanism for the elimination of pathogenic B cells that may contribute to the benefit of HSCT over CYC in the treatment of dcSSc.


Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Esclerodermia Difusa , Esclerodermia Sistémica , Humanos , Esclerodermia Sistémica/cirugía , Esclerodermia Sistémica/patología , Ciclofosfamida/uso terapéutico , Esclerodermia Difusa/terapia , Trasplante Autólogo , Cadenas Pesadas de Inmunoglobulina/genética
3.
Clin Immunol ; 244: 109117, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36109004

RESUMEN

OBJECTIVE: Mast cells in the osteoarthritis (OA) synovium correlate with disease severity. This study aimed to further elucidate the role of mast cells in OA by RNA-Seq analysis and pharmacological blockade of the activity of histamine, a key mast cell mediator, in murine OA. METHODS: We examined OA synovial tissues and fluids by flow cytometry, immunostaining, single-cell and bulk RNA-Seq, qPCR, and ELISA. Cetirizine, a histamine H1 receptor (H1R) antagonist, was used to treat the destabilization of the medial meniscus (DMM) mouse model of OA. RESULTS: Flow cytometry and immunohistology analysis of OA synovial cells revealed KIT+ FcεRI+ and TPSAB1+ mast cells. Single-cell RNA-Seq of OA synovial cells identified the expression of prototypical mast cell markers KIT, TPSAB1, CPA3 and HDC, as well as distinctive markers HPGD, CAVIN2, IL1RL1, PRG2, and CKLF, confirmed by bulk RNA-Seq and qPCR. A mast cell prototypical marker expression score classified 40 OA patients into three synovial pathotypes: mast cell-high, -medium, and -low. Additionally, we detected mast cell mediators including histamine, tryptase AB1, CPA3, PRG2, CAVIN2, and CKLF in OA synovial fluids. Elevated H1R expression was detected in human OA synovium, and treatment of mice with the H1 receptor antagonist cetirizine reduced the severity and OA-related mediators in DMM. CONCLUSION: Based on differential expression of prototypical and distinct mast cell markers, human OA joints can be stratified into mast cell-high, -medium, and -low synovial tissue pathotypes. Pharmacologic blockade of histamine activity holds the potential to improve OA disease outcome.


Asunto(s)
Artritis Reumatoide , Osteoartritis , Animales , Artritis Reumatoide/metabolismo , Cetirizina , Histamina/análisis , Histamina/metabolismo , Histamina/farmacología , Humanos , Proteína 1 Similar al Receptor de Interleucina-1/metabolismo , Mastocitos , Ratones , Osteoartritis/tratamiento farmacológico , Osteoartritis/genética , Osteoartritis/metabolismo , RNA-Seq , Receptores Histamínicos H1/metabolismo , Membrana Sinovial/metabolismo , Triptasas/metabolismo , Triptasas/farmacología
4.
Arthritis Rheumatol ; 76(2): 181-191, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-37610274

RESUMEN

OBJECTIVE: Anti-citrullinated protein antibodies (ACPAs) are highly specific for rheumatoid arthritis (RA) and have long been regarded as pathogenic. Despite substantial in vitro evidence supporting this claim, reports investigating the proinflammatory effects of ACPAs in animal models of arthritis are rare and include mixed results. Here, we sequenced the plasmablast antibody repertoire of a patient with RA and functionally characterized the encoded ACPAs. METHODS: We expressed ACPAs from the antibody repertoire of a patient with RA and characterized their autoantigen specificities on antigen arrays and enzyme-linked immunosorbent assays. Binding affinities were estimated by bio-layer interferometry. Select ACPAs (n = 9) were tested in the collagen antibody-induced arthritis (CAIA) mouse model to evaluate their effects on joint inflammation. RESULTS: Recombinant ACPAs bound preferentially and with high affinity (nanomolar range) to citrullinated (cit) autoantigens (primarily histones and fibrinogen) and to auto-cit peptidylarginine deiminase 4 (PAD4). ACPAs were grouped for in vivo testing based on their predominant cit-antigen specificities. Unexpectedly, injections of recombinant ACPAs significantly reduced paw thickness and arthritis severity in CAIA mice as compared with isotype-matched control antibodies (P ≤ 0.001). Bone erosion, synovitis, and cartilage damage were also significantly reduced (P ≤ 0.01). This amelioration of CAIA was observed for all the ACPAs tested and was independent of cit-PAD4 and cit-fibrinogen specificities. Furthermore, disease amelioration was more prominent when ACPAs were injected at earlier stages of CAIA than at later phases of the model. CONCLUSION: Recombinant patient-derived ACPAs ameliorated CAIA. Their antiinflammatory effects were more preventive than therapeutic. This study highlights a potential protective role for ACPAs in arthritis.


Asunto(s)
Ácidos Aminosalicílicos , Artritis Experimental , Artritis Reumatoide , Humanos , Animales , Ratones , Anticuerpos Antiproteína Citrulinada , Autoanticuerpos , Desiminasas de la Arginina Proteica , Fibrinógeno/metabolismo , Colágeno
5.
JCI Insight ; 9(8)2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38502232

RESUMEN

Joint injury is associated with risk for development of osteoarthritis (OA). Increasing evidence suggests that activation of fibrinolysis is involved in OA pathogenesis. However, the role of the fibrinolytic pathway is not well understood. Here, we showed that the fibrinolytic pathway, which includes plasminogen/plasmin, tissue plasminogen activator, urokinase plasminogen activator (uPA), and the uPA receptor (uPAR), was dysregulated in human OA joints. Pharmacological inhibition of plasmin attenuated OA progression after a destabilization of the medial meniscus in a mouse model whereas genetic deficiency of plasmin activator inhibitor, or injection of plasmin, exacerbated OA. We detected increased uptake of uPA/uPAR in mouse OA joints by microPET/CT imaging. In vitro studies identified that plasmin promotes OA development through multiple mechanisms, including the degradation of lubricin and cartilage proteoglycans and induction of inflammatory and degradative mediators. We showed that uPA and uPAR produced inflammatory and degradative mediators by activating the PI3K, 3'-phosphoinositide-dependent kinase-1, AKT, and ERK signaling cascades and activated matrix metalloproteinases to degrade proteoglycan. Together, we demonstrated that fibrinolysis contributes to the development of OA through multiple mechanisms and suggested that therapeutic targeting of the fibrinolysis pathway can prevent or slow development of OA.


Asunto(s)
Modelos Animales de Enfermedad , Fibrinolisina , Fibrinólisis , Osteoartritis , Receptores del Activador de Plasminógeno Tipo Uroquinasa , Activador de Plasminógeno de Tipo Uroquinasa , Animales , Ratones , Humanos , Fibrinolisina/metabolismo , Osteoartritis/metabolismo , Osteoartritis/patología , Activador de Plasminógeno de Tipo Uroquinasa/metabolismo , Receptores del Activador de Plasminógeno Tipo Uroquinasa/metabolismo , Masculino , Femenino , Ratones Endogámicos C57BL , Plasminógeno/metabolismo , Transducción de Señal , Ratones Noqueados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA