Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Cell ; 187(5): 1145-1159.e21, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38428394

RESUMEN

Chloroplast genes encoding photosynthesis-associated proteins are predominantly transcribed by the plastid-encoded RNA polymerase (PEP). PEP is a multi-subunit complex composed of plastid-encoded subunits similar to bacterial RNA polymerases (RNAPs) stably bound to a set of nuclear-encoded PEP-associated proteins (PAPs). PAPs are essential to PEP activity and chloroplast biogenesis, but their roles are poorly defined. Here, we present cryoelectron microscopy (cryo-EM) structures of native 21-subunit PEP and a PEP transcription elongation complex from white mustard (Sinapis alba). We identify that PAPs encase the core polymerase, forming extensive interactions that likely promote complex assembly and stability. During elongation, PAPs interact with DNA downstream of the transcription bubble and with the nascent mRNA. The models reveal details of the superoxide dismutase, lysine methyltransferase, thioredoxin, and amino acid ligase enzymes that are subunits of PEP. Collectively, these data provide a foundation for the mechanistic understanding of chloroplast transcription and its role in plant growth and adaptation.


Asunto(s)
ARN Polimerasas Dirigidas por ADN , Plastidios , Proteínas de Arabidopsis/metabolismo , Cloroplastos/metabolismo , Microscopía por Crioelectrón , ARN Polimerasas Dirigidas por ADN/química , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/química , Plastidios/enzimología , Transcripción Genética
2.
Trends Biochem Sci ; 48(1): 11-25, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-35798615

RESUMEN

The nucleosome-remodeling and deacetylase (NuRD) complex is an essential transcriptional regulator in all complex animals. All seven core subunits of the complex exist as multiple paralogs, raising the question of whether the complex might utilize paralog switching to achieve cell type-specific functions. We examine the evidence for this idea, making use of published quantitative proteomic data to dissect NuRD composition in 20 different tissues, as well as a large-scale CRISPR knockout screen carried out in >1000 human cancer cell lines. These data, together with recent reports, provide strong support for the idea that distinct permutations of the NuRD complex with tailored functions might regulate tissue-specific gene expression programs.


Asunto(s)
Nucleosomas , Proteómica , Animales , Humanos , Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2/genética , Línea Celular
3.
PLoS Biol ; 21(2): e3001967, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36757924

RESUMEN

Although ACE2 is the primary receptor for Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection, a systematic assessment of host factors that regulate binding to SARS-CoV-2 spike protein has not been described. Here, we use whole-genome CRISPR activation to identify host factors controlling cellular interactions with SARS-CoV-2. Our top hit was a TLR-related cell surface receptor called leucine-rich repeat-containing protein 15 (LRRC15). LRRC15 expression was sufficient to promote SARS-CoV-2 spike binding where they form a cell surface complex. LRRC15 mRNA is expressed in human collagen-producing lung myofibroblasts and LRRC15 protein is induced in severe Coronavirus Disease 2019 (COVID-19) infection where it can be found lining the airways. Mechanistically, LRRC15 does not itself support SARS-CoV-2 infection, but fibroblasts expressing LRRC15 can suppress both pseudotyped and authentic SARS-CoV-2 infection in trans. Moreover, LRRC15 expression in fibroblasts suppresses collagen production and promotes expression of IFIT, OAS, and MX-family antiviral factors. Overall, LRRC15 is a novel SARS-CoV-2 spike-binding receptor that can help control viral load and regulate antiviral and antifibrotic transcriptional programs in the context of COVID-19 infection.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/metabolismo , COVID-19/genética , Antivirales/farmacología , Enzima Convertidora de Angiotensina 2/metabolismo , Fibroblastos/metabolismo , Unión Proteica , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo
4.
Proc Natl Acad Sci U S A ; 120(17): e2219418120, 2023 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-37071682

RESUMEN

Significant recent advances in structural biology, particularly in the field of cryoelectron microscopy, have dramatically expanded our ability to create structural models of proteins and protein complexes. However, many proteins remain refractory to these approaches because of their low abundance, low stability, or-in the case of complexes-simply not having yet been analyzed. Here, we demonstrate the power of using cross-linking mass spectrometry (XL-MS) for the high-throughput experimental assessment of the structures of proteins and protein complexes. This included those produced by high-resolution but in vitro experimental data, as well as in silico predictions based on amino acid sequence alone. We present the largest XL-MS dataset to date, describing 28,910 unique residue pairs captured across 4,084 unique human proteins and 2,110 unique protein-protein interactions. We show that models of proteins and their complexes predicted by AlphaFold2, and inspired and corroborated by the XL-MS data, offer opportunities to deeply mine the structural proteome and interactome and reveal mechanisms underlying protein structure and function.


Asunto(s)
Biología Molecular , Proteómica , Humanos , Microscopía por Crioelectrón , Proteómica/métodos , Espectrometría de Masas/métodos , Biología Molecular/métodos , Proteoma/química , Reactivos de Enlaces Cruzados/química
5.
Proc Natl Acad Sci U S A ; 119(6)2022 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-35115399

RESUMEN

The RecQ-like helicase BLM cooperates with topoisomerase IIIα, RMI1, and RMI2 in a heterotetrameric complex (the "Bloom syndrome complex") for dissolution of double Holliday junctions, key intermediates in homologous recombination. Mutations in any component of the Bloom syndrome complex can cause genome instability and a highly cancer-prone disorder called Bloom syndrome. Some heterozygous carriers are also predisposed to breast cancer. To understand how the activities of BLM helicase and topoisomerase IIIα are coupled, we purified the active four-subunit complex. Chemical cross-linking and mass spectrometry revealed a unique architecture that links the helicase and topoisomerase domains. Using biochemical experiments, we demonstrated dimerization mediated by the N terminus of BLM with a 2:2:2:2 stoichiometry within the Bloom syndrome complex. We identified mutations that independently abrogate dimerization or association of BLM with RMI1, and we show that both are dysfunctional for dissolution using in vitro assays and cause genome instability and synthetic lethal interactions with GEN1/MUS81 in cells. Truncated BLM can also inhibit the activity of full-length BLM in mixed dimers, suggesting a putative mechanism of dominant-negative action in carriers of BLM truncation alleles. Our results identify critical molecular determinants of Bloom syndrome complex assembly required for double Holliday junction dissolution and maintenance of genome stability.


Asunto(s)
Síndrome de Bloom/genética , ADN Cruciforme/genética , Inestabilidad Genómica/genética , Alelos , Proteínas Portadoras/genética , Línea Celular , ADN-Topoisomerasas de Tipo I/genética , Humanos , Mutación/genética , Unión Proteica/genética , RecQ Helicasas/genética , Recombinación Genética/genética , Solubilidad
6.
J Biol Chem ; 299(12): 105482, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37992806

RESUMEN

Bromodomains (BDs) regulate gene expression by recognizing protein motifs containing acetyllysine. Although originally characterized as histone-binding proteins, it has since become clear that these domains interact with other acetylated proteins, perhaps most prominently transcription factors. The likely transient nature and low stoichiometry of such modifications, however, has made it challenging to fully define the interactome of any given BD. To begin to address this knowledge gap in an unbiased manner, we carried out mRNA display screens against a BD-the N-terminal BD of BRD3-using peptide libraries that contained either one or two acetyllysine residues. We discovered peptides with very strong consensus sequences and with affinities that are significantly higher than typical BD-peptide interactions. X-ray crystal structures also revealed modes of binding that have not been seen with natural ligands. Intriguingly, however, our sequences are not found in the human proteome, perhaps suggesting that strong binders to BDs might have been selected against during evolution.


Asunto(s)
Proteoma , Factores de Transcripción , Humanos , Proteoma/metabolismo , Factores de Transcripción/metabolismo , Dominios Proteicos , Secuencias de Aminoácidos , Péptidos/metabolismo , Unión Proteica , Acetilación
7.
Proc Natl Acad Sci U S A ; 117(43): 26728-26738, 2020 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-33046654

RESUMEN

Cyclic peptide library screening technologies show immense promise for identifying drug leads and chemical probes for challenging targets. However, the structural and functional diversity encoded within such libraries is largely undefined. We have systematically profiled the affinity, selectivity, and structural features of library-derived cyclic peptides selected to recognize three closely related targets: the acetyllysine-binding bromodomain proteins BRD2, -3, and -4. We report affinities as low as 100 pM and specificities of up to 106-fold. Crystal structures of 13 peptide-bromodomain complexes reveal remarkable diversity in both structure and binding mode, including both α-helical and ß-sheet structures as well as bivalent binding modes. The peptides can also exhibit a high degree of structural preorganization. Our data demonstrate the enormous potential within these libraries to provide diverse binding modes against a single target, which underpins their capacity to yield highly potent and selective ligands.


Asunto(s)
Biblioteca de Péptidos , Péptidos Cíclicos , Sitios de Unión , Descubrimiento de Drogas , Humanos , Péptidos Cíclicos/química , Péptidos Cíclicos/metabolismo , Unión Proteica , Dominios Proteicos , Factores de Transcripción/química , Factores de Transcripción/metabolismo
8.
J Biol Chem ; 297(6): 101387, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34758356

RESUMEN

Juvenile hormone (JH) plays vital roles in insect reproduction, development, and in many aspects of physiology. JH primarily acts at the gene-regulatory level through interaction with an intracellular receptor (JH receptor [JHR]), a ligand-activated complex of transcription factors consisting of the JH-binding protein methoprene-tolerant (MET) and its partner taiman (TAI). Initial studies indicated significance of post-transcriptional phosphorylation, subunit assembly, and nucleocytoplasmic transport of JHR in JH signaling. However, our knowledge of JHR regulation at the protein level remains rudimentary, partly because of the difficulty of obtaining purified and functional JHR proteins. Here, we present a method for high-yield expression and purification of JHR complexes from two insect species, the beetle T. castaneum and the mosquito Aedes aegypti. Recombinant JHR subunits from each species were coexpressed in an insect cell line using a baculovirus system. MET-TAI complexes were purified through affinity chromatography and anion exchange columns to yield proteins capable of binding both the hormonal ligand (JH III) and DNA bearing cognate JH-response elements. We further examined the beetle JHR complex in greater detail. Biochemical analyses and MS confirmed that T. castaneum JHR was a 1:1 heterodimer consisting of MET and Taiman proteins, stabilized by the JHR agonist ligand methoprene. Phosphoproteomics uncovered multiple phosphorylation sites in the MET protein, some of which were induced by methoprene treatment. Finally, we report a functional bipartite nuclear localization signal, straddled by phosphorylated residues, within the disordered C-terminal region of MET. Our present characterization of the recombinant JHR is an initial step toward understanding JHR structure and function.


Asunto(s)
Aedes/metabolismo , Proteínas de Insectos/metabolismo , Procesamiento Proteico-Postraduccional , Receptores de Superficie Celular/metabolismo , Tribolium/metabolismo , Aedes/genética , Animales , Proteínas de Insectos/genética , Hormonas Juveniles/metabolismo , Fosforilación , Receptores de Superficie Celular/genética , Células Sf9 , Spodoptera , Tribolium/genética
9.
Chem Soc Rev ; 50(22): 12292-12307, 2021 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-34581717

RESUMEN

Protein interactions underlie most molecular events in biology. Many methods have been developed to identify protein partners, to measure the affinity with which these biomolecules interact and to characterise the structures of the complexes. Each approach has its own advantages and limitations, and it can be difficult for the newcomer to determine which methodology would best suit their system. This review provides an overview of many of the techniques most widely used to identify protein partners, assess stoichiometry and binding affinity, and determine low-resolution models for complexes. Key methods covered include: yeast two-hybrid analysis, affinity purification mass spectrometry and proximity labelling to identify partners; size-exclusion chromatography, scattering methods, native mass spectrometry and analytical ultracentrifugation to estimate stoichiometry; isothermal titration calorimetry, biosensors and fluorometric methods (including microscale thermophoresis, anisotropy/polarisation, resonance energy transfer, AlphaScreen, and differential scanning fluorimetry) to measure binding affinity; and crosslinking and hydrogen-deuterium exchange mass spectrometry to probe the structure of complexes.


Asunto(s)
Proteínas , Cromatografía de Afinidad , Espectrometría de Masas
10.
Biochemistry ; 60(9): 648-662, 2021 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-33620209

RESUMEN

Almost all eukaryotic proteins receive diverse post-translational modifications (PTMs) that modulate protein activity. Many histone PTMs are well characterized, heavily influence gene regulation, and are often predictors of distinct transcriptional programs. Although our understanding of the histone PTM network has matured, much is yet to be understood about the roles of transcription factor (TF) PTMs, which might well represent a similarly complex and dynamic network of functional regulation. Members of the bromodomain and extra-terminal domain (BET) family of proteins recognize acetyllysine residues and relay the signals encoded by these modifications. Here, we have investigated the acetylation dependence of several functionally relevant BET-TF interactions in vitro using surface plasmon resonance, nuclear magnetic resonance, and X-ray crystallography. We show that motifs known to be acetylated in TFs E2F1 and MyoD1 can interact with all bromodomains of BRD2, BRD3, and BRD4. The interactions are dependent on diacetylation of the motifs and show a preference for the first BET bromodomain. Structural mapping of the interactions confirms a conserved mode of binding for the two TFs to the acetyllysine binding pocket of the BET bromodomains, mimicking that of other already established functionally important histone- and TF-BET interactions. We also examined a motif from the TF RelA that is known to be acetylated but were unable to observe any interaction, regardless of the acetylation state of the sequence. Our findings overall advance our understanding of BET-TF interactions and suggest a physical link between the important diacetylated motifs found in E2F1 and MyoD1 and the BET-family proteins.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Factor de Transcripción E2F1/metabolismo , Proteína MioD/metabolismo , Factores de Transcripción/metabolismo , Acetilación , Proteínas de Ciclo Celular/química , Cristalografía por Rayos X , Factor de Transcripción E2F1/química , Histonas/química , Humanos , Lisina/química , Modelos Moleculares , Proteína MioD/química , Conformación Proteica , Dominios Proteicos , Procesamiento Proteico-Postraduccional , Factores de Transcripción/química
11.
Molecules ; 25(22)2020 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-33218025

RESUMEN

Proteases catalyse irreversible posttranslational modifications that often alter a biological function of the substrate. The protease dipeptidyl peptidase 4 (DPP4) is a pharmacological target in type 2 diabetes therapy primarily because it inactivates glucagon-like protein-1. DPP4 also has roles in steatosis, insulin resistance, cancers and inflammatory and fibrotic diseases. In addition, DPP4 binds to the spike protein of the MERS virus, causing it to be the human cell surface receptor for that virus. DPP4 has been identified as a potential binding target of SARS-CoV-2 spike protein, so this question requires experimental investigation. Understanding protein structure and function requires reliable protocols for production and purification. We developed such strategies for baculovirus generated soluble recombinant human DPP4 (residues 29-766) produced in insect cells. Purification used differential ammonium sulphate precipitation, hydrophobic interaction chromatography, dye affinity chromatography in series with immobilised metal affinity chromatography, and ion-exchange chromatography. The binding affinities of DPP4 to the SARS-CoV-2 full-length spike protein and its receptor-binding domain (RBD) were measured using surface plasmon resonance and ELISA. This optimised DPP4 purification procedure yielded 1 to 1.8 mg of pure fully active soluble DPP4 protein per litre of insect cell culture with specific activity >30 U/mg, indicative of high purity. No specific binding between DPP4 and CoV-2 spike protein was detected by surface plasmon resonance or ELISA. In summary, a procedure for high purity high yield soluble human DPP4 was achieved and used to show that, unlike MERS, SARS-CoV-2 does not bind human DPP4.


Asunto(s)
Enzima Convertidora de Angiotensina 2/aislamiento & purificación , Dipeptidil Peptidasa 4/aislamiento & purificación , Glicoproteína de la Espiga del Coronavirus/aislamiento & purificación , Enzima Convertidora de Angiotensina 2/biosíntesis , Enzima Convertidora de Angiotensina 2/química , Enzima Convertidora de Angiotensina 2/genética , Animales , Baculoviridae/genética , Baculoviridae/metabolismo , Clonación Molecular , Dipeptidil Peptidasa 4/biosíntesis , Dipeptidil Peptidasa 4/química , Dipeptidil Peptidasa 4/genética , Ensayo de Inmunoadsorción Enzimática , Expresión Génica , Humanos , Cinética , Modelos Moleculares , Plásmidos/química , Plásmidos/metabolismo , Dominios y Motivos de Interacción de Proteínas , Estructura Secundaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Células Sf9 , Glicoproteína de la Espiga del Coronavirus/biosíntesis , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/genética , Spodoptera , Resonancia por Plasmón de Superficie
12.
J Biol Chem ; 293(19): 7160-7175, 2018 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-29567837

RESUMEN

Members of the bromodomain and extra-terminal domain (BET) family of proteins (bromodomain-containing (BRD) 2, 3, 4, and T) are widely expressed and highly conserved regulators of gene expression in eukaryotes. These proteins have been intimately linked to human disease, and more than a dozen clinical trials are currently underway to test BET-protein inhibitors as modulators of cancer. However, although it is clear that these proteins use their bromodomains to bind both histones and transcription factors bearing acetylated lysine residues, the molecular mechanisms by which BET family proteins regulate gene expression are not well defined. In particular, the functions of the other domains such as the ET domain have been less extensively studied. Here, we examine the properties of the ET domain of BRD3 as a protein/protein interaction module. Using a combination of pulldown and biophysical assays, we demonstrate that BRD3 binds to a range of chromatin-remodeling complexes, including the NuRD, BAF, and INO80 complexes, via a short linear "KIKL" motif in one of the complex subunits. NMR-based structural analysis revealed that, surprisingly, this mode of interaction is shared by the AF9 and ENL transcriptional coregulators that contain an acetyl-lysine-binding YEATS domain and regulate transcriptional elongation. This observation establishes a functional commonality between these two families of cancer-related transcriptional regulators. In summary, our data provide insight into the mechanisms by which BET family proteins might link chromatin acetylation to transcriptional outcomes and uncover an unexpected functional similarity between BET and YEATS family proteins.


Asunto(s)
Ensamble y Desensamble de Cromatina , Péptidos/química , Proteínas de Unión al ARN/metabolismo , Transactivadores/metabolismo , ATPasas Asociadas con Actividades Celulares Diversas , Acetilación , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Fenómenos Biofísicos , ADN Helicasas/metabolismo , Proteínas de Unión al ADN/metabolismo , Regulación de la Expresión Génica/fisiología , Redes Reguladoras de Genes , Células HEK293 , Humanos , Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2/metabolismo , Proteínas Nucleares/metabolismo , Unión Proteica , Dominios Proteicos , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/fisiología , Homología de Secuencia de Aminoácido , Transactivadores/química , Factores de Transcripción
13.
J Struct Biol ; 203(3): 205-218, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29885491

RESUMEN

Apolipoprotein-D is a 25 kDa glycosylated member of the lipocalin family that folds into an eight-stranded ß-barrel with a single adjacent α-helix. Apolipoprotein-D specifically binds a range of small hydrophobic ligands such as progesterone and arachidonic acid and has an antioxidant function that is in part due to the reduction of peroxidised lipids by methionine-93. Therefore, apolipoprotein-D plays multiple roles throughout the body and is protective in Alzheimer's disease, where apolipoprotein-D overexpression reduces the amyloid-ß burden in Alzheimer's disease mouse models. Oligomerisation is a common feature of lipocalins that can influence ligand binding. The native structure of apolipoprotein-D, however, has not been conclusively defined. Apolipoprotein-D is generally described as a monomeric protein, although it dimerises when reducing peroxidised lipids. Here, we investigated the native structure of apolipoprotein-D derived from plasma, breast cyst fluid (BCF) and cerebrospinal fluid. In plasma and cerebrospinal fluid, apolipoprotein-D was present in high-molecular weight complexes, potentially in association with lipoproteins. In contrast, apolipoprotein-D in BCF formed distinct oligomeric species. We assessed apolipoprotein-D oligomerisation using native apolipoprotein-D purified from BCF and a suite of complementary methods, including multi-angle laser light scattering, analytical ultracentrifugation and small-angle X-ray scattering. Our analyses showed that apolipoprotein-D predominantly forms a ∼95 to ∼100 kDa tetramer. Small-angle X-ray scattering analysis confirmed these findings and provided a structural model for apolipoprotein-D tetramer. These data indicate apolipoprotein-D rarely exists as a free monomer under physiological conditions and provide insights into novel native structures of apolipoprotein-D and into oligomerisation behaviour in the lipocalin family.


Asunto(s)
Enfermedad de Alzheimer/genética , Apolipoproteínas D/química , Conformación Proteica , Multimerización de Proteína , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/química , Animales , Apolipoproteínas D/líquido cefalorraquídeo , Apolipoproteínas D/genética , Quiste Mamario/química , Cristalografía por Rayos X , Modelos Animales de Enfermedad , Humanos , Ligandos , Lipocalinas/química , Ratones , Unión Proteica , Dispersión del Ángulo Pequeño
14.
Nucleic Acids Res ; 44(19): 9153-9165, 2016 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-27369384

RESUMEN

Classical zinc fingers (ZFs) are traditionally considered to act as sequence-specific DNA-binding domains. More recently, classical ZFs have been recognised as potential RNA-binding modules, raising the intriguing possibility that classical-ZF transcription factors are involved in post-transcriptional gene regulation via direct RNA binding. To date, however, only one classical ZF-RNA complex, that involving TFIIIA, has been structurally characterised. Yin Yang-1 (YY1) is a multi-functional transcription factor involved in many regulatory processes, and binds DNA via four classical ZFs. Recent evidence suggests that YY1 also interacts with RNA, but the molecular nature of the interaction remains unknown. In the present work, we directly assess the ability of YY1 to bind RNA using in vitro assays. Systematic Evolution of Ligands by EXponential enrichment (SELEX) was used to identify preferred RNA sequences bound by the YY1 ZFs from a randomised library over multiple rounds of selection. However, a strong motif was not consistently recovered, suggesting that the RNA sequence selectivity of these domains is modest. YY1 ZF residues involved in binding to single-stranded RNA were identified by NMR spectroscopy and found to be largely distinct from the set of residues involved in DNA binding, suggesting that interactions between YY1 and ssRNA constitute a separate mode of nucleic acid binding. Our data are consistent with recent reports that YY1 can bind to RNA in a low-specificity, yet physiologically relevant manner.


Asunto(s)
Secuencia de Bases , Sitios de Unión , ARN/química , Factor de Transcripción YY1/química , Dedos de Zinc , Secuencia de Aminoácidos , Aptámeros de Nucleótidos , ADN/química , ADN/metabolismo , Humanos , Espectroscopía de Resonancia Magnética , Mutagénesis , Unión Proteica , ARN/metabolismo , Técnica SELEX de Producción de Aptámeros , Factor de Transcripción YY1/metabolismo
15.
J Biol Chem ; 291(2): 924-38, 2016 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-26565020

RESUMEN

Chromodomain Helicase DNA-binding protein 4 (CHD4) is a chromatin-remodeling enzyme that has been reported to regulate DNA-damage responses through its N-terminal region in a poly(ADP-ribose) polymerase-dependent manner. We have identified and determined the structure of a stable domain (CHD4-N) in this N-terminal region. The-fold consists of a four-α-helix bundle with structural similarity to the high mobility group box, a domain that is well known as a DNA binding module. We show that the CHD4-N domain binds with higher affinity to poly(ADP-ribose) than to DNA. We also show that the N-terminal region of CHD4, although not CHD4-N alone, is essential for full nucleosome remodeling activity and is important for localizing CHD4 to sites of DNA damage. Overall, these data build on our understanding of how CHD4-NuRD acts to regulate gene expression and participates in the DNA-damage response.


Asunto(s)
Autoantígenos/química , Autoantígenos/metabolismo , Dominios HMG-Box , Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2/química , Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2/metabolismo , Poli Adenosina Difosfato Ribosa/metabolismo , Secuencia de Aminoácidos , Ensamble y Desensamble de Cromatina , Secuencia Conservada , ADN/metabolismo , Roturas del ADN de Doble Cadena , Daño del ADN , Células HEK293 , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Nucleosomas/metabolismo , Péptidos/metabolismo , Unión Proteica , Estructura Secundaria de Proteína , Eliminación de Secuencia , Relación Estructura-Actividad
16.
J Biol Chem ; 291(30): 15853-66, 2016 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-27235397

RESUMEN

Chromatin remodeling enzymes act to dynamically regulate gene accessibility. In many cases, these enzymes function as large multicomponent complexes that in general comprise a central ATP-dependent Snf2 family helicase that is decorated with a variable number of regulatory subunits. The nucleosome remodeling and deacetylase (NuRD) complex, which is essential for normal development in higher organisms, is one such macromolecular machine. The NuRD complex comprises ∼10 subunits, including the histone deacetylases 1 and 2 (HDAC1 and HDAC2), and is defined by the presence of a CHD family remodeling enzyme, most commonly CHD4 (chromodomain helicase DNA-binding protein 4). The existing paradigm holds that CHD4 acts as the central hub upon which the complex is built. We show here that this paradigm does not, in fact, hold and that CHD4 is a peripheral component of the NuRD complex. A complex lacking CHD4 that has HDAC activity can exist as a stable species. The addition of recombinant CHD4 to this nucleosome deacetylase complex reconstitutes a NuRD complex with nucleosome remodeling activity. These data contribute to our understanding of the architecture of the NuRD complex.


Asunto(s)
Autoantígenos/metabolismo , ADN Helicasas/metabolismo , Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2/metabolismo , Nucleosomas/metabolismo , Animales , Autoantígenos/genética , Línea Celular , ADN Helicasas/genética , Histona Desacetilasa 1/genética , Histona Desacetilasa 1/metabolismo , Histona Desacetilasa 2/genética , Histona Desacetilasa 2/metabolismo , Humanos , Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2/genética , Ratones , Nucleosomas/genética
17.
Proteomics ; 16(3): 465-76, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26572822

RESUMEN

Arginine methylation on nonhistone proteins is associated with a number of cellular processes including RNA splicing, protein localization, and the formation of protein complexes. In this manuscript, Saccharomyces cerevisiae proteome arrays carrying 4228 proteins were used with an antimethylarginine antibody to first identify 88 putatively arginine-methylated proteins. By treating the arrays with recombinant arginine methyltransferase Hmt1, 42 proteins were found to be possible substrates of this enzyme. Analysis of the putative arginine-methylated proteins revealed that they were predominantly nuclear or nucleolar in localization, consistent with the localization of Hmt1. Many are involved in known methylarginine-associated functions, such as RNA processing and ribonucleoprotein complex biogenesis, yet others are of newer classes, namely RNA/DNA helicases and tRNA-associated proteins. Using ex vivo methylation and MS/MS, a set of 12 proteins (Brr1, Dia4, Hts1, Mpp10, Mrd1, Nug1, Prp43, Rpa43, Rrp43, Spp381, Utp4, and Npl3), including the RNA helicase Prp43 and tRNA ligases Dia4 and Hts1, were all validated as Hmt1 substrates. Interestingly, the majority of these also had human orthologs, or family members, that have been documented elsewhere to carry arginine methylation. These results confirm arginine methylation as a widespread modification and Hmt1 as the major arginine methyltransferase in the S. cerevisiae cell.


Asunto(s)
Arginina/metabolismo , Procesamiento Proteico-Postraduccional , Proteína-Arginina N-Metiltransferasas/metabolismo , Proteoma/metabolismo , Proteínas Represoras/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Secuencia de Aminoácidos , ADN Helicasas/genética , ADN Helicasas/metabolismo , Perfilación de la Expresión Génica , Ontología de Genes , Metilación , Anotación de Secuencia Molecular , Datos de Secuencia Molecular , Análisis por Matrices de Proteínas , Mapeo de Interacción de Proteínas , Proteína-Arginina N-Metiltransferasas/genética , Proteoma/genética , ARN Helicasas/genética , ARN Helicasas/metabolismo , Empalme del ARN , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Represoras/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Espectrometría de Masas en Tándem
18.
Bioorg Med Chem ; 23(5): 960-5, 2015 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-25678017

RESUMEN

We have developed an approach for directly isolating an intact multi-protein chromatin remodeling complex from mammalian cell extracts using synthetic peptide affinity reagent 4. FOG1(1-15), a short peptide sequence known to target subunits of the nucleosome remodeling and deacetylase (NuRD) complex, was joined via a 35-atom hydrophilic linker to the StreptagII peptide. Loading this peptide onto Streptactin beads enabled capture of the intact NuRD complex from MEL cell nuclear extract. Gentle biotin elution yielded the desired intact complex free of significant contaminants and in a form that was catalytically competent in a nucleosome remodeling assay. The efficiency of 4 in isolating the NuRD complex was comparable to other reported methods utilising recombinantly produced GST-FOG1(1-45).


Asunto(s)
Marcadores de Afinidad , Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2/aislamiento & purificación , Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2/metabolismo , Péptidos/química , Secuencia de Aminoácidos , Animales , Catálisis , Cromatografía Líquida de Alta Presión , Electroforesis en Gel de Poliacrilamida , Ratones , Datos de Secuencia Molecular , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Células Tumorales Cultivadas
19.
Mol Cell Proteomics ; 12(11): 3184-98, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23918811

RESUMEN

Protein-protein interactions can be modulated by the methylation of arginine residues. As a means of testing this, we recently described a conditional two-hybrid system, based on the bacterial adenylate cyclase (BACTH) system. Here, we have used this conditional two-hybrid system to explore the effect of arginine methylation in modulating protein-protein interactions in a subset of the Saccharomyces cerevisiae arginine methylproteome network. Interactions between the yeast hub protein Npl3 and yeast proteins Air2, Ded1, Gbp2, Snp1, and Yra1 were first validated in the absence of methylation. The major yeast arginine methyltransferase Hmt1 was subsequently included in the conditional two-hybrid assay, initially to determine the degree of methylation that occurs. Proteins Snp1 and Yra1 were confirmed as Hmt1 substrates, with five and two novel arginine methylation sites mapped by ETD LC-MS/MS on these proteins, respectively. Proteins Ded1 and Gbp2, previously predicted but not confirmed as substrates of Hmt1, were also found to be methylated with five and seven sites mapped respectively. Air2 was found to be a novel substrate of Hmt1 with two sites mapped. Finally, we investigated the interactions of Npl3 with the five interaction partners in the presence of active Hmt1 and in the presence of Hmt1 with a G68R inactivation mutation. We found that the interaction between Npl3 and Air2, and Npl3 and Ded1, were significantly increased in the presence of active Hmt1; the interaction of Npl3 and Snp1 showed a similar degree of increase in interaction but this was not statistically significant. The interactions of Npl3 and Gbp2, along with Npl3 and Yra1, were not significantly increased or decreased by methylation. We conclude that methylarginine may be a widespread means by which the interactions of proteins are modulated.


Asunto(s)
Arginina/química , Arginina/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas Adaptadoras Transductoras de Señales/química , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Secuencia de Aminoácidos , Western Blotting , Cromatografía Liquida , ARN Helicasas DEAD-box/química , ARN Helicasas DEAD-box/genética , ARN Helicasas DEAD-box/metabolismo , Metilación , Datos de Secuencia Molecular , Proteínas Nucleares/química , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Mapas de Interacción de Proteínas , Procesamiento Proteico-Postraduccional , Proteína-Arginina N-Metiltransferasas/química , Proteína-Arginina N-Metiltransferasas/genética , Proteína-Arginina N-Metiltransferasas/metabolismo , Proteoma/química , Proteoma/genética , Proteoma/metabolismo , Proteómica , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Represoras/química , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Ribonucleoproteína Nuclear Pequeña U1/química , Ribonucleoproteína Nuclear Pequeña U1/genética , Ribonucleoproteína Nuclear Pequeña U1/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Especificidad por Sustrato , Espectrometría de Masas en Tándem , Técnicas del Sistema de Dos Híbridos
20.
J Proteome Res ; 13(3): 1744-56, 2014 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-24517342

RESUMEN

Post-translational lysine methylation is well established as a regulator of histone activity; however, it is emerging that these modifications are also likely to play extensive roles outside of the histone code. Here we obtain new insights into non-histone lysine methylation and protein lysine methyltransferase (PKMT) activity by elucidating absolute stoichiometries of lysine methylation, using mass spectrometry and absolute quantification (AQUA), in wild-type and 5 PKMT gene deletion strains of Saccharomyces cerevisiae. By analyzing 8 sites of methylation in 3 non-histone proteins, elongation factor 1-α (EF1α), elongation factor 2 (EF2), and 60S ribosomal protein L42-A/B (Rpl42ab), we find that production of preferred methylation states on individual lysine residues is commonplace and likely occurs through processive PKMT activity, Class I PKMTs can be associated with processive methylation, lysine residues are selectively methylated by specific PKMTs, and lysine methylation exists over a broad range of stoichiometries. Together these findings suggest that specific sites and forms of lysine methylation may play specialized roles in the regulation of non-histone protein activity. We also uncover new relationships between two proteins previously characterized as PKMTs, SEE1 and EFM1, in EF1α methylation and show that past characterizations of EFM1 as having direct PKMT activity may require reinterpretation.


Asunto(s)
Lisina/química , Metiltransferasas/química , Procesamiento Proteico-Postraduccional , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/enzimología , Secuencia de Aminoácidos , Lisina/metabolismo , Metilación , Metiltransferasas/metabolismo , Datos de Secuencia Molecular , Factor 1 de Elongación Peptídica/química , Factor 1 de Elongación Peptídica/metabolismo , Factor 2 de Elongación Peptídica/química , Factor 2 de Elongación Peptídica/metabolismo , Proteínas Ribosómicas/química , Proteínas Ribosómicas/metabolismo , Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA