Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
J Am Chem Soc ; 146(19): 13236-13246, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38701635

RESUMEN

Fluids under extreme confinement show characteristics significantly different from those of their bulk counterpart. This work focuses on water confined within the complex cavities of highly hydrophobic metal-organic frameworks (MOFs) at high pressures. A combination of high-pressure intrusion-extrusion experiments with molecular dynamic simulations and synchrotron data reveals that supercritical transition for MOF-confined water takes place at a much lower temperature than in bulk water, ∼250 K below the reference values. This large shifting of the critical temperature (Tc) is attributed to the very large density of confined water vapor in the peculiar geometry and chemistry of the cavities of Cu2tebpz (tebpz = 3,3',5,5'-tetraethyl-4,4'-bipyrazolate) hydrophobic MOF. This is the first time the shift of Tc is investigated for water confined within highly hydrophobic nanoporous materials, which explains why such a large reduction of the critical temperature was never reported before, neither experimentally nor computationally.

2.
Cereb Cortex ; 33(1): 114-134, 2022 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-35231927

RESUMEN

The intrinsic functional organization of the brain changes into older adulthood. Age differences are observed at multiple spatial scales, from global reductions in modularity and segregation of distributed brain systems, to network-specific patterns of dedifferentiation. Whether dedifferentiation reflects an inevitable, global shift in brain function with age, circumscribed, experience-dependent changes, or both, is uncertain. We employed a multimethod strategy to interrogate dedifferentiation at multiple spatial scales. Multi-echo (ME) resting-state fMRI was collected in younger (n = 181) and older (n = 120) healthy adults. Cortical parcellation sensitive to individual variation was implemented for precision functional mapping of each participant while preserving group-level parcel and network labels. ME-fMRI processing and gradient mapping identified global and macroscale network differences. Multivariate functional connectivity methods tested for microscale, edge-level differences. Older adults had lower BOLD signal dimensionality, consistent with global network dedifferentiation. Gradients were largely age-invariant. Edge-level analyses revealed discrete, network-specific dedifferentiation patterns in older adults. Visual and somatosensory regions were more integrated within the functional connectome; default and frontoparietal control network regions showed greater connectivity; and the dorsal attention network was more integrated with heteromodal regions. These findings highlight the importance of multiscale, multimethod approaches to characterize the architecture of functional brain aging.


Asunto(s)
Encéfalo , Conectoma , Humanos , Anciano , Encéfalo/diagnóstico por imagen , Conectoma/métodos , Imagen por Resonancia Magnética , Envejecimiento , Incertidumbre , Mapeo Encefálico/métodos , Red Nerviosa
3.
Proc Natl Acad Sci U S A ; 117(12): 6476-6483, 2020 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-32152114

RESUMEN

We tested the hypothesis that underrepresented students in active-learning classrooms experience narrower achievement gaps than underrepresented students in traditional lecturing classrooms, averaged across all science, technology, engineering, and mathematics (STEM) fields and courses. We conducted a comprehensive search for both published and unpublished studies that compared the performance of underrepresented students to their overrepresented classmates in active-learning and traditional-lecturing treatments. This search resulted in data on student examination scores from 15 studies (9,238 total students) and data on student failure rates from 26 studies (44,606 total students). Bayesian regression analyses showed that on average, active learning reduced achievement gaps in examination scores by 33% and narrowed gaps in passing rates by 45%. The reported proportion of time that students spend on in-class activities was important, as only classes that implemented high-intensity active learning narrowed achievement gaps. Sensitivity analyses showed that the conclusions are robust to sampling bias and other issues. To explain the extensive variation in efficacy observed among studies, we propose the heads-and-hearts hypothesis, which holds that meaningful reductions in achievement gaps only occur when course designs combine deliberate practice with inclusive teaching. Our results support calls to replace traditional lecturing with evidence-based, active-learning course designs across the STEM disciplines and suggest that innovations in instructional strategies can increase equity in higher education.


Asunto(s)
Logro , Grupos Minoritarios/educación , Aprendizaje Basado en Problemas , Evaluación Educacional , Ingeniería/educación , Humanos , Matemática/educación , Ciencia/educación , Estudiantes , Tecnología/educación , Estados Unidos , Universidades
4.
Nano Lett ; 21(7): 2848-2853, 2021 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-33759533

RESUMEN

Materials or systems demonstrating negative linear compressibility (NLC), whose size increases (decreases) in at least one of their dimensions upon compression (decompression) are very rare. Materials demonstrating this effect in all their dimensions, negative volumetric compressibility (NVC), are exceptional. Here, by liquid porosimetry and in situ neutron diffraction, we show that one can achieve exceptional NLC and NVC values by nonwetting liquid intrusion in flexible porous media, namely in the ZIF-8 metal-organic framework (MOF). Atomistic simulations show that the volumetric expansion is due to the presence of liquid in the windows connecting the cavities of ZIF-8. This discovery paves the way for designing novel materials with exceptional NLC and NVC at reasonable pressures suitable for a wide range of applications.

5.
J Neurochem ; 158(2): 539-553, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33797782

RESUMEN

Converging lines of evidence from several models, and post-mortem human brain tissue studies, support the involvement of the kynurenine pathway (KP) in Huntington's disease (HD) pathogenesis. Quantifying KP metabolites in HD biofluids is desirable, both to study pathobiology and as a potential source of biomarkers to quantify pathway dysfunction and evaluate the biochemical impact of therapeutic interventions targeting its components. In a prospective single-site controlled cohort study with standardised collection of cerebrospinal fluid (CSF), blood, phenotypic and imaging data, we used high-performance liquid-chromatography to measure the levels of KP metabolites-tryptophan, kynurenine, kynurenic acid, 3-hydroxykynurenine, anthranilic acid and quinolinic acid-in CSF and plasma of 80 participants (20 healthy controls, 20 premanifest HD and 40 manifest HD). We investigated short-term stability, intergroup differences, associations with clinical and imaging measures and derived sample-size calculation for future studies. Overall, KP metabolites in CSF and plasma were stable over 6 weeks, displayed no significant group differences and were not associated with clinical or imaging measures. We conclude that the studied metabolites are readily and reliably quantifiable in both biofluids in controls and HD gene expansion carriers. However, we found little evidence to support a substantial derangement of the KP in HD, at least to the extent that it is reflected by the levels of the metabolites in patient-derived biofluids.


Asunto(s)
Enfermedad de Huntington/sangre , Enfermedad de Huntington/líquido cefalorraquídeo , Quinurenina/sangre , Quinurenina/líquido cefalorraquídeo , Transducción de Señal , Adulto , Anciano , Biomarcadores/sangre , Biomarcadores/líquido cefalorraquídeo , Cromatografía Líquida de Alta Presión , Estudios de Cohortes , Femenino , Humanos , Enfermedad de Huntington/diagnóstico por imagen , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Fenotipo , Estudios Prospectivos
6.
Langmuir ; 37(16): 4827-4835, 2021 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-33844556

RESUMEN

On-demand access to renewable and environmentally friendly energy sources is critical to address current and future energy needs. To achieve this, the development of new mechanisms of efficient thermal energy storage (TES) is important to improve the overall energy storage capacity. Demonstrated here is the ideal concept that the thermal effect of developing a solid-liquid interface between a non-wetting liquid and hydrophobic nanoporous material can store heat to supplement current TES technologies. The fundamental macroscopic property of a liquid's surface entropy and its relationship to its solid surface are one of the keys to predict the magnitude of the thermal effect by the development of the liquid-solid interface in a nanoscale environment-driven through applied pressure. Demonstrated here is this correlation of these properties with the direct measurement of the thermal effect of non-wetting liquids intruding into hydrophobic nanoporous materials. It is shown that the model can resonably predict the heat of intrusion into rigid mesoporous silica and some microporous zeolite when the temperature dependence of the contact angle is applied. Conversely, intrusion into flexible microporous metal-organic frameworks requires further improvement. The reported results with further development have the potential to lead to the development of a new supplementary method and mechanim for TES.

7.
Cereb Cortex ; 30(1): 47-58, 2020 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-31220215

RESUMEN

The adult functional connectome is well characterized by a macroscale spatial gradient of connectivity traversing from unimodal toward higher-order transmodal cortices that recapitulates known principles of hierarchical organization and myelination patterns. Despite an emerging literature assessing connectome properties in neonates, the presence of connectome gradients and particularly their correspondence to microstructure remains largely unknown. We derived connectome gradients using unsupervised techniques applied to functional connectivity data from 40 term-born neonates. A series of cortex-wide analysis examined associations to magnetic resonance imaging-derived morphological parameters (cortical thickness, sulcal depth, curvature), measures of tissue microstructure (intracortical T1w/T2w intensity, superficial white matter diffusion parameters), and subcortico-cortical functional connectivity. Our findings indicate that the primary neonatal connectome gradient runs between sensorimotor and visual anchors and captures specific associations to cortical and superficial white matter microstructure as well as thalamo-cortical connectivity. A second gradient indicated an anterior-to-posterior asymmetry in macroscale connectivity alongside an immature differentiation between unimodal and transmodal areas, indicating a connectome-level circuitry en route to an adult-like organization. Our findings reveal an important coordination of structural and functional interactions in the neonatal connectome across spatial scales. Observed associations were replicable across individual neonates, suggesting consistency and generalizability.


Asunto(s)
Encéfalo/anatomía & histología , Encéfalo/fisiología , Conectoma , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Lactante , Imagen por Resonancia Magnética , Masculino , Vías Nerviosas/anatomía & histología , Vías Nerviosas/fisiología , Sustancia Blanca/anatomía & histología , Sustancia Blanca/fisiología
8.
Neuroimage ; 216: 116859, 2020 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-32325211

RESUMEN

Insular cortex is a core hub involved in multiple cognitive and socio-affective processes. Yet, the anatomical mechanisms that explain how it is involved in such a diverse array of functions remain incompletely understood. Here, we tested the hypothesis that changes in myeloarchitecture across the insular cortex explain how it can be involved in many different facets of cognitive function. Detailed intracortical profiling, performed across hundreds of insular locations on the basis of myelin-sensitive magnetic resonance imaging (MRI), was compressed into a lower-dimensional space uncovering principal axes of myeloarchitectonic variation. Leveraging two datasets with different high-resolution MRI contrasts, we obtained robust support for two principal dimensions of insular myeloarchitectonic differentiation in vivo, one running from ventral anterior to posterior banks and one radiating from dorsal anterior towards both ventral anterior and posterior subregions. Analyses of post mortem 3D histological data showed that the antero-posterior axis was mirrored in cytoarchitectural markers, even when controlling for sulco-gyral folding. Resting-state functional connectomics in the same individuals and ad hoc meta-analyses showed that myelin gradients in the insula relate to diverse affiliation to macroscale intrinsic functional systems, showing differential shifts in functional network embedding across each myelin-derived gradient. Collectively, our findings offer a novel approach to capture structure-function interactions of a key node of the limbic system, and suggest a multidimensional structural basis underlying the diverse functional roles of the insula.


Asunto(s)
Corteza Cerebral , Conectoma/métodos , Sistema Límbico , Imagen por Resonancia Magnética/métodos , Vaina de Mielina , Adulto , Anciano , Corteza Cerebral/anatomía & histología , Corteza Cerebral/diagnóstico por imagen , Corteza Cerebral/fisiología , Diagnóstico , Femenino , Humanos , Sistema Límbico/anatomía & histología , Sistema Límbico/diagnóstico por imagen , Sistema Límbico/fisiología , Masculino , Adulto Joven
9.
Anal Chem ; 92(2): 2145-2150, 2020 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-31855413

RESUMEN

Presented here is a comprehensive study on the antioxidant properties of various alcoholic beverages: beers, wines, tinctures, and strong spirits, including whisky, brandy, cognac, vodkas, and liquors. The Trolox equivalent antioxidant capacity (TEAC) of each of these various alcoholic beverages is determined using an electron paramagnetic resonance (EPR) method, which is based on a semiempirical correlation. Moreover, the EC50 parameter was determined on the basis of the dependences of the TEAC values obtained by this mathematical equation. Moreover, the total phenolic content (TP) and color index, which have a direct influence on the antioxidant properties of the alcoholic beverages, were identified. The results showed that all the investigated alcoholic beverages (ABs), with the exception for vodkas, exhibit antioxidant properties. By performing a statistical analysis, it was found that the TEAC value significantly depends on the TP, production method, and raw material from which the alcohol was made. However, it is assumed that the TEAC value of alcoholic beverages is independent of the alcohol content.


Asunto(s)
Bebidas Alcohólicas/análisis , Antioxidantes/análisis , Antioxidantes/farmacología , Compuestos de Bifenilo/antagonistas & inhibidores , Espectroscopía de Resonancia por Spin del Electrón , Estructura Molecular , Picratos/antagonistas & inhibidores
10.
Epilepsia ; 61(7): 1438-1452, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32584424

RESUMEN

OBJECTIVE: Juvenile myoclonic epilepsy (JME) is the most common genetic generalized epilepsy syndrome. Myoclonus may relate to motor system hyperexcitability and can be provoked by cognitive activities. To aid genetic mapping in complex neuropsychiatric disorders, recent research has utilized imaging intermediate phenotypes (endophenotypes). Here, we aimed to (a) characterize activation profiles of the motor system during different cognitive tasks in patients with JME and their unaffected siblings, and (b) validate those as endophenotypes of JME. METHODS: This prospective cross-sectional investigation included 32 patients with JME, 12 unaffected siblings, and 26 controls, comparable for age, sex, handedness, language laterality, neuropsychological performance, and anxiety and depression scores. We investigated patterns of motor system activation during episodic memory encoding and verb generation functional magnetic resonance imaging (fMRI) tasks. RESULTS: During both tasks, patients and unaffected siblings showed increased activation of motor system areas compared to controls. Effects were more prominent during memory encoding, which entailed hand motion via joystick responses. Subgroup analyses identified stronger activation of the motor cortex in JME patients with ongoing seizures compared to seizure-free patients. Receiver-operating characteristic curves, based on measures of motor activation, accurately discriminated both patients with JME and their siblings from healthy controls (area under the curve: 0.75 and 0.77, for JME and a combined patient-sibling group against controls, respectively; P < .005). SIGNIFICANCE: Motor system hyperactivation represents a cognitive, domain-independent endophenotype of JME. We propose measures of motor system activation as quantitative traits for future genetic imaging studies in this syndrome.


Asunto(s)
Cognición/fisiología , Hipercinesia/diagnóstico por imagen , Hipercinesia/fisiopatología , Epilepsia Mioclónica Juvenil/diagnóstico por imagen , Epilepsia Mioclónica Juvenil/fisiopatología , Desempeño Psicomotor/fisiología , Adolescente , Adulto , Estudios Transversales , Endofenotipos , Femenino , Humanos , Hipercinesia/psicología , Masculino , Persona de Mediana Edad , Epilepsia Mioclónica Juvenil/psicología , Estudios Prospectivos , Adulto Joven
11.
Hum Brain Mapp ; 40(18): 5213-5230, 2019 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-31444896

RESUMEN

Aging is characterized by accumulation of structural and metabolic changes in the brain. Recent studies suggest transmodal brain networks are especially sensitive to aging, which, we hypothesize, may be due to their apical position in the cortical hierarchy. Studying an open-access healthy cohort (n = 102, age range = 30-89 years) with MRI and Aß PET data, we estimated age-related cortical thinning, hippocampal atrophy and Aß deposition. In addition to carrying out surface-based morphological and metabolic mapping experiments, we stratified effects along neocortical and hippocampal resting-state functional connectome gradients derived from independent datasets. The cortical gradient depicts an axis of functional differentiation from sensory-motor regions to transmodal regions, whereas the hippocampal gradient recapitulates its long-axis. While age-related thinning and increased Aß deposition occurred across the entire cortical topography, increased Aß deposition was especially pronounced toward higher-order transmodal regions. Age-related atrophy was greater toward the posterior end of the hippocampal long-axis. No significant effect of age on Aß deposition in the hippocampus was observed. Imaging markers correlated with behavioral measures of fluid intelligence and episodic memory in a topography-specific manner, confirmed using both univariate as well as multivariate analyses. Our results strengthen existing evidence of structural and metabolic change in the aging brain and support the use of connectivity gradients as a compact framework to analyze and conceptualize brain-based biomarkers of aging.


Asunto(s)
Envejecimiento/fisiología , Mapeo Encefálico/tendencias , Encéfalo/diagnóstico por imagen , Encéfalo/fisiología , Conectoma/tendencias , Imagen Multimodal/tendencias , Adulto , Factores de Edad , Anciano , Anciano de 80 o más Años , Mapeo Encefálico/métodos , Conectoma/métodos , Femenino , Humanos , Masculino , Persona de Mediana Edad , Imagen Multimodal/métodos
12.
Epilepsia ; 60(4): 593-604, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30889276

RESUMEN

Epilepsy is among the most common chronic neurologic disorders, with 30%-40% of patients having seizures despite antiepileptic drug treatment. The advent of brain imaging and network analyses has greatly improved the understanding of this condition. In particular, developments in magnetic resonance imaging (MRI) have provided measures for the noninvasive characterization and detection of lesions causing epilepsy. MRI techniques can probe structural and functional connectivity, and network analyses have shaped our understanding of whole-brain anomalies associated with focal epilepsies. This review considers the progress made by neuroimaging and connectomics in the study of drug-resistant epilepsies due to focal substrates, particularly temporal lobe epilepsy related to mesiotemporal sclerosis and extratemporal lobe epilepsies associated with malformations of cortical development. In these disorders, there is evidence of widespread disturbances of structural and functional connectivity that may contribute to the clinical and cognitive prognosis of individual patients. It is hoped that studying the interplay between macroscale network anomalies and lesional profiles will improve our understanding of focal epilepsies and assist treatment choices.


Asunto(s)
Conectoma/métodos , Epilepsia Refractaria/diagnóstico por imagen , Epilepsia Refractaria/fisiopatología , Humanos , Imagen por Resonancia Magnética/métodos , Neuroimagen/métodos
13.
J Pharmacol Exp Ther ; 362(2): 327-337, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28576975

RESUMEN

Lipopolysaccharide (LPS) contributes to asthma exacerbations and development of inhaled corticosteroid insensitivity. Complete resistance to systemic corticosteroids is rare, and most patients lie on a continuum of steroid responsiveness. This study aimed to examine the sensitivity of combined ovalbumin- (Ova) and LPS-induced functional and inflammatory responses to inhaled and systemic corticosteroid in conscious guinea pigs to test the hypothesis that the route of administration affects sensitivity. Guinea pigs were sensitized to Ova and challenged with inhaled Ova alone or combined with LPS. Airway function was determined by measuring specific airway conductance via whole-body plethysmography. Airway hyper-responsiveness to histamine was determined before and 24 hours post-Ova challenge. Airway inflammation and underlying mechanisms were determined from bronchoalveolar lavage cell counts and lung tissue cytokines. Vehicle or dexamethasone was administered by once-daily i.p. injection (5, 10, or 20 mg/kg) or twice-daily inhalation (4 or 20 mg/ml) for 6 days before Ova challenge or Ova with LPS. LPS exacerbated Ova-induced responses, elongating early asthmatic responses (EAR), prolonging histamine bronchoconstriction, and further elevating airway inflammation. Intraperitoneal dexamethasone (20 mg/kg) significantly reduced the elongated EAR and airway inflammation but not the increased bronchoconstriction to histamine. In contrast, inhaled dexamethasone (20 mg/ml), which inhibited responses to Ova alone, did not significantly reduce functional and inflammatory responses to combined Ova and LPS. Combined Ova and LPS-induced functional and inflammatory responses are insensitive to inhaled, but they are only partially sensitive to systemic, dexamethasone. This finding suggests that the route of corticosteroid administration may be important in determining corticosteroid sensitivity of asthmatic responses.


Asunto(s)
Corticoesteroides/administración & dosificación , Asma/inducido químicamente , Asma/tratamiento farmacológico , Lipopolisacáridos/toxicidad , Ovalbúmina/toxicidad , Administración por Inhalación , Animales , Asma/metabolismo , Hiperreactividad Bronquial/inducido químicamente , Hiperreactividad Bronquial/tratamiento farmacológico , Hiperreactividad Bronquial/metabolismo , Vías de Administración de Medicamentos , Combinación de Medicamentos , Cobayas , Inyecciones Intraperitoneales , Lipopolisacáridos/administración & dosificación , Masculino , Ovalbúmina/administración & dosificación , Hipersensibilidad Respiratoria/inducido químicamente , Hipersensibilidad Respiratoria/tratamiento farmacológico , Hipersensibilidad Respiratoria/metabolismo
14.
J Phys Chem Lett ; 15(4): 880-887, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38241150

RESUMEN

Heat and the work of compression/decompression are among the basic properties of thermodynamic systems. Being relevant to many industrial and natural processes, this thermomechanical energy is challenging to tune due to fundamental boundaries for simple fluids. Here via direct experimental and atomistic observations, we demonstrate, for fluids consisting of nanoporous material and a liquid, one can overcome these limitations and noticeably affect both thermal and mechanical energies of compression/decompression exploiting preferential intrusion of water from aqueous solutions into subnanometer pores. We hypothesize that this effect is due to the enthalpy of dilution manifesting itself as the aqueous solution concentrates upon the preferential intrusion of pure water into pores. We suggest this genuinely subnanoscale phenomenon can be potentially a strategy for controlling the thermomechanical energy of microporous liquids and tuning the wetting/dewetting heat of nanopores relevant to a variety of natural and technological processes spanning from biomedical applications to oil-extraction and renewable energy.

15.
ACS Appl Mater Interfaces ; 16(4): 5286-5293, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38258752

RESUMEN

Wetting of a solid by a liquid is relevant for a broad range of natural and technological processes. This process is complex and involves the generation of heat, which is still poorly understood especially in nanoconfined systems. In this article, scanning transitiometry was used to measure and evaluate the pressure-driven heat of intrusion of water into solid ZIF-8 powder within the temperature range of 278.15-343.15 K. The conditions examined included the presence and absence of atmospheric gases, basic pH conditions, solid sample origins, and temperature. Simultaneously with these experiments, molecular dynamics simulations were conducted to elucidate the changing behavior of water as it enters into ZIF-8. The results are rationalized within a temperature-dependent thermodynamic cycle. This cycle describes the temperature-dependent process of ZIF-8 filling, heating, emptying, and cooling with respect to the change of internal energy of the cycle from the calculated change in the specific heat capacity of the system. At 298 K the experimental heat of intrusion per gram of ZIF-8 was found to be -10.8 ± 0.8 J·g-1. It increased by 19.2 J·g-1 with rising temperature to 343 K which is in a reasonable match with molecular dynamic simulations that predicted 16.1 J·g-1 rise. From these combined experiments, the role of confined water in heat of intrusion of ZIF-8 is further clarified.

16.
Brain Commun ; 4(6): fcac258, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36382217

RESUMEN

Proton magnetic resonance spectroscopy is a non-invasive method of exploring cerebral metabolism. In Huntington's disease, altered proton magnetic resonance spectroscopy-determined concentrations of several metabolites have been described; however, findings are often discrepant and longitudinal studies are lacking. Proton magnetic resonance spectroscopy metabolites may represent a source of biomarkers, thus their relationship with established markers of disease progression require further exploration to assess prognostic value and elucidate pathways associated with neurodegeneration. In a prospective single-site controlled cohort study with standardized collection of CSF, blood, phenotypic and volumetric imaging data, we used 3 T proton magnetic resonance spectroscopy in conjunction with the linear combination of model spectra method to quantify seven metabolites (total n-acetylaspartate, total creatine, total choline, myo-inositol, GABA, glutamate and glutathione) in the putamen of 59 participants at baseline (15 healthy controls, 15 premanifest and 29 manifest Huntington's disease gene expansion carriers) and 48 participants at 2-year follow-up (12 healthy controls, 13 premanifest and 23 manifest Huntington's disease gene expansion carriers). Intergroup differences in concentration and associations with CSF and plasma biomarkers; including neurofilament light chain and mutant Huntingtin, volumetric imaging markers; namely whole brain, caudate, grey matter and white matter volume, measures of disease progression and cognitive decline, were assessed cross-sectionally using generalized linear models and partial correlation. We report no significant groupwise differences in metabolite concentration at baseline but found total creatine and total n-acetylaspartate to be significantly reduced in manifest compared with premanifest participants at follow-up. Additionally, total creatine and myo-inositol displayed significant associations with reduced caudate volume across both time points in gene expansion carriers. Although relationships were observed between proton magnetic resonance spectroscopy metabolites and biofluid measures, these were not consistent across time points. To further assess prognostic value, we examined whether baseline proton magnetic resonance spectroscopy values, or rate of change, predicted subsequent change in established measures of disease progression. Several associations were found but were inconsistent across known indicators of disease progression. Finally, longitudinal mixed-effects models revealed glutamine + glutamate to display a slow linear decrease over time in gene expansion carriers. Altogether, our findings show some evidence of reduced total n-acetylaspartate and total creatine as the disease progresses and cross-sectional associations between select metabolites, namely total creatine and myo-inositol, and markers of disease progression, potentially highlighting the proposed roles of neuroinflammation and metabolic dysfunction in disease pathogenesis. However, the absence of consistent group differences, inconsistency between baseline and follow-up, and lack of clear longitudinal change suggests that proton magnetic resonance spectroscopy metabolites have limited potential as Huntington's disease biomarkers.

17.
Sci Data ; 9(1): 569, 2022 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-36109562

RESUMEN

Multimodal neuroimaging grants a powerful window into the structure and function of the human brain at multiple scales. Recent methodological and conceptual advances have enabled investigations of the interplay between large-scale spatial trends (also referred to as gradients) in brain microstructure and connectivity, offering an integrative framework to study multiscale brain organization. Here, we share a multimodal MRI dataset for Microstructure-Informed Connectomics (MICA-MICs) acquired in 50 healthy adults (23 women; 29.54 ± 5.62 years) who underwent high-resolution T1-weighted MRI, myelin-sensitive quantitative T1 relaxometry, diffusion-weighted MRI, and resting-state functional MRI at 3 Tesla. In addition to raw anonymized MRI data, this release includes brain-wide connectomes derived from (i) resting-state functional imaging, (ii) diffusion tractography, (iii) microstructure covariance analysis, and (iv) geodesic cortical distance, gathered across multiple parcellation scales. Alongside, we share large-scale gradients estimated from each modality and parcellation scale. Our dataset will facilitate future research examining the coupling between brain microstructure, connectivity, and function. MICA-MICs is available on the Canadian Open Neuroscience Platform data portal ( https://portal.conp.ca ) and the Open Science Framework ( https://osf.io/j532r/ ).


Asunto(s)
Conectoma , Neuroimagen , Adulto , Canadá , Imagen de Difusión por Resonancia Magnética , Femenino , Humanos , Masculino , Neuroimagen/métodos
18.
ACS Appl Mater Interfaces ; 14(9): 11547-11558, 2022 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-35191666

RESUMEN

Gas separation performances are usually degraded under humid conditions for many crystalline porous materials because of the lack of water stability and/or the competition of water vapor toward the interaction sites (e.g., open metal sites). Zeolitic imidazolate frameworks (ZIFs) are suitable candidates for practical applications in gas separation because of their excellent physical/chemical stabilities. However, the limitation of substituent positions in common ZIFs has prevented extensive pore engineering to improve their separation performance. In a type of gyroidal ZIFs with gie topology, the Schiff base moiety provides additional substituent positions, making it possible to modify the spatial arrangement of hydrophobic methyl groups. Herein, a new gyroidal ZIF, ZnBAIm (H2BAIm = 1,2-bis(1-(1H-imidazol-4-yl)ethylidene)hydrazine), is designed, synthesized, and characterized. The spatially modified ZnBAIm exhibits improved thermal/chemical/mechanical stabilities compared to ZnBIm (H2BIm = 1,2-bis((5H-imidazol-4-yl)methylene)hydrazine). ZnBAIm can remain intact up to about 480 °C in a N2 atmosphere and tolerate harsh treatments (e.g., 5 M NaOH aqueous solution at room temperature for 24 h and 190 MPa high pressure in the presence of water). Moreover, the modified pore and window sizes have improved significantly the ethane/ethylene selectivity and separation performance under humid conditions for ZnBAIm. Breakthrough experiments demonstrate efficient separation of a C2H6/C2H4 (50/50, v/v) binary gas mixture under ambient conditions; more importantly, the C2H6/C2H4 separation performance is unaffected under highly humid conditions (up to 80% RH). The separation performance is attributed to combined thermodynamic (stronger dispersion interaction with C2H6 than with C2H4) and kinetic factors (diffusion), determined by density functional theory calculations and kinetic adsorption study, respectively.

19.
Artículo en Inglés | MEDLINE | ID: mdl-35656844

RESUMEN

Controlling the pressure at which liquids intrude (wet) and extrude (dry) a nanopore is of paramount importance for a broad range of applications, such as energy conversion, catalysis, chromatography, separation, ionic channels, and many more. To tune these characteristics, one typically acts on the chemical nature of the system or pore size. In this work, we propose an alternative route for controlling both intrusion and extrusion pressures via proper arrangement of the grains of the nanoporous material. To prove the concept, dynamic intrusion-extrusion cycles for powdered and monolithic ZIF-8 metal-organic framework were conducted by means of water porosimetry and in operando neutron scattering. We report a drastic increase in intrusion-extrusion dynamic hysteresis when going from a fine powder to a dense monolith configuration, transforming an intermediate performance of the ZIF-8 + water system (poor molecular spring) into a desirable shock-absorber with more than 1 order of magnitude enhancement of dissipated energy per cycle. The obtained results are supported by MD simulations and pave the way for an alternative methodology of tuning intrusion-extrusion pressure using a macroscopic arrangement of nanoporous material.

20.
J Phys Chem Lett ; 12(20): 4951-4957, 2021 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-34009998

RESUMEN

Negative compressibility (NC) is a phenomenon when an object expands/shrinks in at least one of its dimensions upon compression/decompression. NC is very rare and is of great interest for a number of applications. In this work a gigantic (more than one order of magnitude higher compared to the reported values) NC effect was recorded during intrusion-extrusion of a non-wetting liquid into a flexible porous structure. For this purpose, in situ high-pressure neutron scattering, intrusion-extrusion experiments, and DFT calculations were applied to a system consisting of water and a highly hydrophobic Cu2(tebpz) metal-organic framework (MOF), which upon water penetration expands in a and c directions to demonstrate NC coefficients more than order of magnitude higher compared to the highest values ever reported. The proposed approach is not limited to the materials used in this work and can be applied to achieve coefficients of negative linear compressibility of more than 103 TPa-1.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA