Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Neuroendocrinology ; 113(11): 1127-1139, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37271140

RESUMEN

INTRODUCTION: Sex and ovarian hormones influence cocaine seeking and relapse vulnerability, but less is known regarding the cellular and synaptic mechanisms contributing to these behavioral sex differences. One factor thought to influence cue-induced seeking behavior following withdrawal is cocaine-induced changes in the spontaneous activity of pyramidal neurons in the basolateral amygdala (BLA). However, the mechanisms underlying these changes, including potential sex or estrous cycle effects, are unknown. METHODS: Ex vivo whole-cell patch clamp electrophysiology was conducted to investigate the effects of cocaine exposure, sex, and estrous cycle fluctuations on two properties that can influence spontaneous activity of BLA pyramidal neurons: (1) frequency and amplitude of spontaneous excitatory postsynaptic currents (sEPSCs) and (2) intrinsic excitability. Recordings of BLA pyramidal neurons were conducted in adult male and female rats and across the estrous cycle following 2-4 weeks of withdrawal from extended-access cocaine self-administration (6 h/day for 10 days) or drug-naïve conditions. RESULTS: In both sexes, cocaine exposure increased the frequency, but not amplitude, of sEPSCs and neuronal intrinsic excitability. Across the estrous cycle, sEPSC frequency and intrinsic excitability were significantly elevated only in cocaine-exposed females in the estrus stage of the cycle, a stage when cocaine-seeking behavior is known to be enhanced. CONCLUSIONS: Here, we identify potential mechanisms underlying cocaine-induced alterations in the spontaneous activity of BLA pyramidal neurons in both sexes along with changes in these properties across the estrous cycle.


Asunto(s)
Complejo Nuclear Basolateral , Cocaína , Ratas , Animales , Femenino , Masculino , Cocaína/farmacología , Ratas Sprague-Dawley , Transmisión Sináptica , Ciclo Estral
2.
J Neurosci ; 41(39): 8262-8277, 2021 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-34413203

RESUMEN

Cue-induced cocaine craving progressively intensifies (incubates) after withdrawal from cocaine self-administration in rats and humans. In rats, the expression of incubation ultimately depends on Ca2+-permeable AMPARs that accumulate in synapses onto medium spiny neurons (MSNs) in the NAc core. However, the delay in their accumulation (∼1 month after drug self-administration ceases) suggests earlier waves of plasticity. This prompted us to conduct the first study of NMDAR transmission in NAc core during incubation, focusing on the GluN3 subunit, which confers atypical properties when incorporated into NMDARs, including insensitivity to Mg2+ block and Ca2+ impermeability. Whole-cell patch-clamp recordings were conducted in MSNs of adult male rats 1-68 d after discontinuing extended-access saline or cocaine self-administration. NMDAR transmission was enhanced after 5 d of cocaine withdrawal, and this persisted for at least 68 d of withdrawal. The earliest functional alterations were mediated through increased contributions of GluN2B-containing NMDARs, followed by increased contributions of GluN3-containing NMDARs. As predicted by GluN3-NMDAR incorporation, fewer MSN spines exhibited NMDAR-mediated Ca2+ entry. GluN3A knockdown in NAc core was sufficient to prevent incubation of craving, consistent with biotinylation studies showing increased GluN3A surface expression, although array tomography studies suggested that adaptations involving GluN3B also occur. Collectively, our data show that a complex cascade of NMDAR and AMPAR plasticity occurs in NAc core, potentially through a homeostatic mechanism, leading to persistent increases in cocaine cue reactivity and relapse vulnerability. This is a remarkable example of experience-dependent glutamatergic plasticity evolving over a protracted window in the adult brain.SIGNIFICANCE STATEMENT "Incubation of craving" is an animal model for the persistence of vulnerability to cue-induced relapse after prolonged drug abstinence. Incubation also occurs in human drug users. AMPAR plasticity in medium spiny neurons (MSNs) of the NAc core is critical for incubation of cocaine craving but occurs only after a delay. Here we found that AMPAR plasticity is preceded by NMDAR plasticity that is essential for incubation and involves GluN3, an atypical NMDAR subunit that markedly alters NMDAR transmission. Together with AMPAR plasticity, this represents profound remodeling of excitatory synaptic transmission onto MSNs. Given the importance of MSNs for translating motivation into action, this plasticity may explain, at least in part, the profound shifts in motivated behavior that characterize addiction.


Asunto(s)
Cocaína/administración & dosificación , Ansia/efectos de los fármacos , Inhibidores de Captación de Dopamina/administración & dosificación , Comportamiento de Búsqueda de Drogas/efectos de los fármacos , Glicoproteínas de Membrana/metabolismo , Núcleo Accumbens/metabolismo , Animales , Calcio/metabolismo , Comportamiento de Búsqueda de Drogas/fisiología , Masculino , Núcleo Accumbens/efectos de los fármacos , Técnicas de Placa-Clamp , Ratas , Ratas Sprague-Dawley , Autoadministración
3.
Addict Biol ; 26(1): e12848, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-31750602

RESUMEN

Cocaine addiction is a chronic, relapsing disorder. Stress and cues related to cocaine are two common relapse triggers. We have recently shown that exposure to repeated restraint stress during early withdrawal accelerates the time-dependent intensification or "incubation" of cue-induced cocaine craving that occurs during the first month of withdrawal, although craving ultimately plateaus at the same level observed in controls. These data indicate that chronic stress exposure during early withdrawal may result in increased vulnerability to cue-induced relapse during this period. Previous studies have shown that chronic stress exposure in drug-naïve rats increases neuronal activity in the basolateral amygdala (BLA), a region critical for behavioral responses to stress. Given that glutamatergic projections from the BLA to the nucleus accumbens are critical for the incubation of cue-induced cocaine craving, we hypothesized that cocaine withdrawal and chronic stress exposure produce separate increases that additively increase BLA neuronal activity. To assess this, we conducted in vivo extracellular single-unit recordings from the BLA of anesthetized adult male rats following cocaine or saline self-administration (6 h/day for 10 days) and repeated restraint stress or control conditions on withdrawal days (WD) 6-14. Recordings were conducted from WD15 to WD20. Interestingly, cocaine exposure alone increased the spontaneous firing rate in the BLA to levels observed following chronic stress exposure in drug-naïve rats. Chronic stress exposure during cocaine withdrawal further increased firing rate. These studies may identify a potential mechanism by which both cocaine and chronic stress exposure drive cue-induced relapse vulnerability during abstinence.


Asunto(s)
Complejo Nuclear Basolateral/fisiopatología , Trastornos Relacionados con Cocaína/fisiopatología , Estrés Psicológico/fisiopatología , Animales , Cocaína , Ansia/fisiología , Señales (Psicología) , Comportamiento de Búsqueda de Drogas/fisiología , Masculino , Neuronas/fisiología , Núcleo Accumbens/fisiología , Ratas , Autoadministración , Síndrome de Abstinencia a Sustancias
4.
Eur J Neurosci ; 50(3): 2590-2601, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30222904

RESUMEN

In several brain regions, ongoing metabotropic glutamate receptor 1 (mGlu1) transmission has been shown to tonically suppress synaptic levels of Ca2+ -permeable AMPA receptors (CP-AMPARs) while pharmacological activation of mGlu1 removes CP-AMPARs from these synapses. Consistent with this, we previously showed in nucleus accumbens (NAc) medium spiny neurons (MSNs) that reduced mGlu1 tone enables and mGlu1 positive allosteric modulation reverses the elevation of CP-AMPAR levels in the NAc that underlies enhanced cocaine craving in the "incubation of craving" rat model of addiction. To better understand mGlu1/CP-AMPAR interactions, we used a NAc/prefrontal cortex co-culture system in which NAc MSNs express high CP-AMPAR levels, providing an in vitro model for NAc MSNs after the incubation of cocaine craving. The non-specific group I orthosteric agonist dihydroxyphenylglycine (10 min) decreased cell surface GluA1 but not GluA2, indicating CP-AMPAR internalization. This was prevented by mGlu1 (LY367385) or mGlu5 (MTEP) blockade. However, a selective role for mGlu1 emerged in studies of long-term antagonist treatment. Thus, LY367385 (24 hr) increased surface GluA1 without affecting GluA2, whereas MTEP (24 hr) had no effect. In hippocampal neurons, scaling up of CP-AMPARs can occur through a mechanism requiring retinoic acid (RA) signaling and new GluA1 synthesis. Consistent with this, the LY367385-induced increase in surface GluA1 was blocked by anisomycin (translation inhibitor) or 4-(diethylamino)-benzaldehyde (RA synthesis inhibitor). Thus, mGlu1 transmission tonically suppresses cell surface CP-AMPAR levels, and decreasing mGlu1 tone increases surface CP-AMPARs via RA signaling and protein translation. These results identify a novel mechanism for homeostatic plasticity in NAc MSNs.


Asunto(s)
Calcio/metabolismo , Núcleo Accumbens/metabolismo , Biosíntesis de Proteínas/fisiología , Receptores AMPA/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Tretinoina/metabolismo , Animales , Benzoatos/farmacología , Células Cultivadas , Antagonistas de Aminoácidos Excitadores/farmacología , Femenino , Glicina/análogos & derivados , Glicina/farmacología , Metoxihidroxifenilglicol/análogos & derivados , Metoxihidroxifenilglicol/farmacología , Ratones , Ratones de la Cepa 129 , Ratones Transgénicos , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Núcleo Accumbens/citología , Núcleo Accumbens/efectos de los fármacos , Embarazo , Biosíntesis de Proteínas/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Receptores AMPA/antagonistas & inhibidores , Receptores de Glutamato Metabotrópico/antagonistas & inhibidores , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología
5.
Addict Biol ; 23(1): 80-89, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-27859963

RESUMEN

A major challenge for treating cocaine addiction is the propensity for abstinent users to relapse. Two important triggers for relapse are cues associated with prior drug use and stressful life events. To study their interaction in promoting relapse during abstinence, we used the incubation model of craving and relapse in which cue-induced drug seeking progressively intensifies ('incubates') during withdrawal from extended-access cocaine self-administration. We tested rats for cue-induced cocaine seeking on withdrawal day (WD) 1. Rats were then subjected to repeated restraint stress or control conditions (seven sessions held between WD6 and WD14). All rats were tested again for cue-induced cocaine seeking on WD15, 1 day after the last stress or control session. Although controls showed a time-dependent increase in cue-induced cocaine seeking (incubation), rats exposed to repeated stress in early withdrawal exhibited a more robust increase in seeking behavior between WD1 and WD15. In separate stressed and control rats, equivalent cocaine seeking was observed on WD48. These results indicate that repeated stress in early withdrawal accelerates incubation of cocaine craving, although craving plateaus at the same level were observed in controls. However, 1 month after the WD48 test, rats subjected to repeated stress in early withdrawal showed enhanced cue-induced cocaine seeking following acute (24 hours) food deprivation stress. Together, these data indicate that chronic stress exposure enhances the initial rate of incubation of craving during early withdrawal, resulting in increased vulnerability to cue-induced relapse during this period, and may lead to a persistent increase in vulnerability to the relapse-promoting effects of stress.


Asunto(s)
Cocaína/administración & dosificación , Ansia , Inhibidores de Captación de Dopamina/administración & dosificación , Comportamiento de Búsqueda de Drogas , Restricción Física , Estrés Psicológico , Animales , Trastornos Relacionados con Cocaína , Señales (Psicología) , Masculino , Ratas , Autoadministración
6.
J Neurosci ; 33(4): 1411-6, 2013 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-23345217

RESUMEN

Amphetamine exposure transiently increases Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) α expression in the nucleus accumbens (NAcc) shell and this persistently increases local GluA1 S831 phosphorylation and enhances behavioral responding to the drug. Here we assessed whether transiently interfering with CaMKII signaling using a dominant-negative CaMKIIα mutant delivered to the NAcc shell with herpes simplex viral vectors could reverse these long-lasting biochemical and behavioral effects observed following exposure to amphetamine. As expected, transient expression of CaMKIIα K42M in the NAcc shell produced a corresponding transient increase in CaMKIIα and decrease in pCaMKIIα (T286) protein levels in this site. Remarkably, this transient inhibition of CaMKII activity produced a long-lasting reversal of the increased GluA1 S831 phosphorylation levels in NAcc shell and persistently blocked the enhanced locomotor response to and self-administration of amphetamine normally observed in rats previously exposed to the drug. Together, these results indicate that even transient interference with CaMKII signaling may confer long-lasting benefits in drug-sensitized individuals and point to CaMKII and its downstream pathways as attractive therapeutic targets for the treatment of stimulant addiction.


Asunto(s)
Trastornos Relacionados con Anfetaminas/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Núcleo Accumbens/metabolismo , Transducción de Señal/efectos de los fármacos , Anfetamina/farmacología , Animales , Estimulantes del Sistema Nervioso Central/farmacología , Immunoblotting , Inmunohistoquímica , Masculino , Ratas , Ratas Long-Evans , Ratas Sprague-Dawley , Transducción de Señal/fisiología
7.
J Neurosci ; 33(3): 1130-42, 2013 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-23325250

RESUMEN

Brain-derived neurotrophic factor (BDNF) contributes to diverse types of plasticity, including cocaine addiction. We investigated the role of BDNF in the rat nucleus accumbens (NAc) in the incubation of cocaine craving over 3 months of withdrawal from extended access cocaine self-administration. First, we confirmed by immunoblotting that BDNF levels are elevated after this cocaine regimen on withdrawal day 45 (WD45) and showed that BDNF mRNA levels are not altered. Next, we explored the time course of elevated BDNF expression using immunohistochemistry. Elevation of BDNF in the NAc core was detected on WD45 and further increased on WD90, whereas elevation in shell was not detected until WD90. Surface expression of activated tropomyosin receptor kinase B (TrkB) was also enhanced on WD90. Next, we used viral vectors to attenuate BDNF-TrkB signaling. Virus injection into the NAc core enhanced cue-induced cocaine seeking on WD1 compared with controls, whereas no effect was observed on WD30 or WD90. Attenuating BDNF-TrkB signaling in shell did not affect cocaine seeking on WD1 or WD45 but significantly decreased cocaine seeking on WD90. These results suggest that basal levels of BDNF transmission in the NAc core exert a suppressive effect on cocaine seeking in early withdrawal (WD1), whereas the late elevation of BDNF protein in NAc shell contributes to incubation in late withdrawal (WD90). Finally, BDNF protein levels in the NAc were significantly increased after ampakine treatment, supporting the novel hypothesis that the gradual increase of BDNF levels in NAc accompanying incubation could be caused by increased AMPAR transmission during withdrawal.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/fisiología , Trastornos Relacionados con Cocaína/metabolismo , Cocaína/administración & dosificación , Inhibidores de Captación de Dopamina/administración & dosificación , Núcleo Accumbens/metabolismo , Síndrome de Abstinencia a Sustancias/metabolismo , Animales , Cocaína/efectos adversos , Condicionamiento Operante/efectos de los fármacos , Señales (Psicología) , Masculino , Núcleo Accumbens/efectos de los fármacos , Fosforilación , Ratas , Ratas Sprague-Dawley , Receptor trkB/metabolismo , Autoadministración
8.
J Neurosci ; 33(27): 11012-22, 2013 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-23825406

RESUMEN

It is well established that behavioral sensitization to cocaine is accompanied by increased spine density and AMPA receptor (AMPAR) transmission in the nucleus accumbens (NAc), but two major questions remain unanswered. Are these adaptations mechanistically coupled? And, given that they can be dissociated from locomotor sensitization, what is their functional significance? We tested the hypothesis that the guanine-nucleotide exchange factor Kalirin-7 (Kal-7) couples cocaine-induced AMPAR and spine upregulation and that these adaptations underlie sensitization of cocaine's incentive-motivational properties-the properties that make it "wanted." Rats received eight daily injections of saline or cocaine. On withdrawal day 14, we found that Kal-7 levels and activation of its downstream effectors Rac-1 and PAK were increased in the NAc of cocaine-sensitized rats. Furthermore, AMPAR surface expression and spine density were increased, as expected. To determine whether these changes require Kal-7, a lentiviral vector expressing Kal-7 shRNA was injected into the NAc core before cocaine exposure. Knocking down Kal-7 abolished the AMPAR and spine upregulation normally seen during cocaine withdrawal. Despite the absence of these adaptations, rats with reduced Kal-7 levels developed locomotor sensitization. However, incentive sensitization, which was assessed by how rapidly rats learned to self-administer a threshold dose of cocaine, was severely impaired. These results identify a signaling pathway coordinating AMPAR and spine upregulation during cocaine withdrawal, demonstrate that locomotor and incentive sensitization involve divergent mechanisms, and link enhanced excitatory transmission in the NAc to incentive sensitization.


Asunto(s)
Cocaína/administración & dosificación , Espinas Dendríticas/metabolismo , Factores de Intercambio de Guanina Nucleótido/fisiología , Plasticidad Neuronal/fisiología , Receptores AMPA/metabolismo , Animales , Espinas Dendríticas/efectos de los fármacos , Técnicas de Silenciamiento del Gen/métodos , Masculino , Actividad Motora/efectos de los fármacos , Actividad Motora/fisiología , Plasticidad Neuronal/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Autoadministración , Síndrome de Abstinencia a Sustancias/metabolismo , Regulación hacia Arriba/genética
9.
Eur J Neurosci ; 39(7): 1159-69, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24712995

RESUMEN

Brain-derived neurotrophic factor (BDNF) plays a critical role in plasticity at glutamate synapses and in the effects of repeated cocaine exposure. We recently showed that intracranial injection of BDNF into the rat nucleus accumbens (NAc), a key region for cocaine addiction, rapidly increases α-amino-3-hyroxy-5-methyl-4-isoxazole-propionic acid receptor (AMPAR) surface expression. To further characterize BDNF's role in both rapid AMPAR trafficking and slower, homeostatic changes in AMPAR surface expression, we investigated the effects of acute (30 min) and long-term (24 h) treatment with BDNF on AMPAR distribution in NAc medium spiny neurons from postnatal rats co-cultured with mouse prefrontal cortex neurons to restore excitatory inputs. Immunocytochemical studies showed that acute BDNF treatment increased cell surface GluA1 and GluA2 levels, as well as their co-localization, on NAc neurons. This effect of BDNF, confirmed using a protein crosslinking assay, was dependent on ERK but not AKT signaling. In contrast, long-term BDNF treatment decreased AMPAR surface expression on NAc neurons. Based on this latter result, we tested the hypothesis that BDNF plays a role in AMPAR 'scaling down' in response to a prolonged increase in neuronal activity produced by bicuculline (24 h). Supporting this hypothesis, decreasing BDNF signaling with the extracellular BDNF scavenger TrkB-Fc prevented the scaling down of GluA1 and GluA2 surface levels in NAc neurons normally produced by bicuculline. In conclusion, BDNF exerts bidirectional effects on NAc AMPAR surface expression, depending on duration of exposure. Furthermore, BDNF's involvement in synaptic scaling in the NAc differs from its previously described role in the visual cortex.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/farmacología , Neuronas/metabolismo , Núcleo Accumbens/metabolismo , Receptores AMPA/metabolismo , Membranas Sinápticas/metabolismo , Animales , Bicuculina/farmacología , Células Cultivadas , Potenciales Postsinápticos Excitadores , Homeostasis , Ratones , Neuronas/efectos de los fármacos , Neuronas/fisiología , Núcleo Accumbens/citología , Transporte de Proteínas , Ratas , Ratas Sprague-Dawley
10.
Behav Brain Res ; 467: 115002, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38636779

RESUMEN

Mild traumatic brain injury (mTBI) disrupts cognitive processes that influence risk taking behavior. Little is known regarding the effects of repetitive mild injury (rmTBI) or whether these outcomes are sex specific. Risk/reward decision making is mediated by the prefrontal cortex (PFC), which is densely innervated by catecholaminergic fibers. Aberrant PFC catecholamine activity has been documented following TBI and may underlie TBI-induced risky behavior. The present study characterized the effects of rmTBI on risk/reward decision making behavior and catecholamine transmitter regulatory proteins within the PFC. Rats were exposed to sham, single (smTBI), or three closed-head controlled cortical impact (CH-CCI) injuries and assessed for injury-induced effects on risk/reward decision making using a probabilistic discounting task (PDT). In the first week post-final surgery, mTBI increased risky choice preference. By the fourth week, males exhibited increased latencies to make risky choices following rmTBI, demonstrating a delayed effect on processing speed. When levels of tyrosine hydroxylase (TH) and the norepinephrine reuptake transporter (NET) were measured within subregions of the PFC, females exhibited dramatic increases of TH levels within the orbitofrontal cortex (OFC) following smTBI. However, both males and females demonstrated reduced levels of OFC NET following rmTBI. These results indicate the OFC is susceptible to catecholamine instability after rmTBI and suggests that not all areas of the PFC contribute equally to TBI-induced imbalances. Overall, the CH-CCI model of rmTBI has revealed time-dependent and sex-specific changes in risk/reward decision making and catecholamine regulation following repetitive mild head injuries.


Asunto(s)
Conmoción Encefálica , Catecolaminas , Toma de Decisiones , Corteza Prefrontal , Recompensa , Asunción de Riesgos , Animales , Masculino , Femenino , Toma de Decisiones/fisiología , Catecolaminas/metabolismo , Corteza Prefrontal/metabolismo , Conmoción Encefálica/metabolismo , Conmoción Encefálica/fisiopatología , Tirosina 3-Monooxigenasa/metabolismo , Ratas Sprague-Dawley , Ratas , Modelos Animales de Enfermedad , Proteínas de Transporte de Noradrenalina a través de la Membrana Plasmática/metabolismo
11.
Addict Neurosci ; 52023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36778664

RESUMEN

Drug associated cues are a common relapse trigger for individuals recovering from cocaine use disorder. Sex and ovarian hormones influence patterns of cocaine use and relapse vulnerability, with studies indicating that females show increased cue-induced craving and relapse vulnerability compared to males. In a rodent model of cocaine craving and relapse vulnerability, cue-induced cocaine seeking behavior following weeks of withdrawal from extended-access cocaine self-administration is higher in females in the estrus stage of the reproductive (estrous) cycle (Estrus Females) compared to both Males and females in all other stages (Non-Estrus Females). However, the neuronal substrates and cellular mechanisms underlying these sex differences is not fully understood. One region that contributes to both sex differences in behavioral responding and cue-induced cocaine seeking is the basolateral amygdala (BLA), while one receptor known to play a critical role in mediating cocaine seeking behavior is metabotropic glutamate receptor 5 (mGlu5). Here we assessed the effects of BLA mGlu5 inhibition following prolonged withdrawal from cocaine self-administration on observed estrous cycle-dependent changes in cue-induced cocaine seeking behavior. We found that BLA microinjections of the mGlu5 antagonist MTEP selectively reduced the enhanced cue-induced cocaine seeking normally observed in Estrus Females while having no effect on cocaine seeking in Males and Non-Estrus Females. These findings identify a unique interaction between cocaine-exposure, estrous cycle fluctuations and BLA mGlu5-dependent transmission on cue-induced cocaine seeking behavior.

12.
J Neurosci ; 31(41): 14536-41, 2011 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-21994370

RESUMEN

Following prolonged withdrawal from extended access cocaine self-administration in adult rats, high conductance Ca2+ -ermeable AMPA receptors (CP-AMPARs) accumulate in nucleus accumbens (NAc) synapses and mediate the expression of "incubated" cue-induced cocaine craving. Using patch-clamp recordings from NAc slices prepared after extended access cocaine self-administration and >45 d of withdrawal, we found that group I metabotropic glutamate receptor (mGluR) stimulation using 3,5-dihydroxyphenylglycine (DHPG; 50 µm) rapidly eliminates the postsynaptic CP-AMPAR contribution to NAc synaptic transmission. This is accompanied by facilitation of Ca2+ -impermeable AMPAR (CI-AMPAR)-mediated transmission, suggesting that DHPG may promote an exchange between CP-AMPARs and CI-AMPARs. In saline controls, DHPG also reduced excitatory transmission but this occurred through a CB1 receptor-dependent presynaptic mechanism rather than an effect on postsynaptic AMPARs. Blockade of CB1 receptors had no significant effect on the alterations in AMPAR transmission produced by DHPG in the cocaine group. Interestingly, the effect of DHPG in the cocaine group was mediated by mGluR1 whereas its effect in the saline group was mediated by mGluR5. These results indicate that regulation of synaptic transmission in the NAc is profoundly altered after extended access cocaine self-administration and prolonged withdrawal. Furthermore, they suggest that activation of mGluR1 may represent a potential strategy for reducing cue-induced cocaine craving in abstinent cocaine addicts.


Asunto(s)
Calcio/metabolismo , Cocaína/farmacología , Inhibidores de Captación de Dopamina/farmacología , Núcleo Accumbens/citología , Proteína Quinasa C/metabolismo , Receptores AMPA/metabolismo , Sinapsis/efectos de los fármacos , Animales , Benzoxazinas/farmacología , Biofisica , Bloqueadores de los Canales de Calcio/farmacología , Relación Dosis-Respuesta a Droga , Estimulación Eléctrica , Inhibidores Enzimáticos/farmacología , Antagonistas de Aminoácidos Excitadores/farmacología , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Técnicas In Vitro , Masculino , Metoxihidroxifenilglicol/análogos & derivados , Metoxihidroxifenilglicol/farmacología , Morfolinas/farmacología , Naftalenos/farmacología , Neuronas/citología , Neuronas/efectos de los fármacos , Técnicas de Placa-Clamp , Piperidinas/farmacología , Pirazoles/farmacología , Ratas , Ratas Sprague-Dawley , Sinapsis/metabolismo
13.
Front Behav Neurosci ; 16: 808590, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35283738

RESUMEN

Adolescence is a critical period of development with increased sensitivity toward psychological stressors. Many psychiatric conditions emerge during adolescence and animal studies have shown that that acute stress has long-term effects on hypothalamic-pituitary-adrenal axis function and behavior. We recently demonstrated that acute stress produces long-term electrophysiological changes in locus coeruleus and long-lasting anxiety-like behavior in adolescent male rats. Based on prior reports of increased stress sensitivity during adolescence and increased sensitivity of female locus coeruleus toward corticotropin releasing factor, we hypothesized that the same acute stressor would cause different behavioral and physiological responses in adolescent female and adult male and female rats one week after stressor exposure. In this study, we assessed age and sex differences in how an acute psychological stressor affects corticosterone release, anxiety-like behavior, and locus coeruleus physiology at short- and long-term intervals. All groups of animals except adult female responded to stress with elevated corticosterone levels at the acute time point. One week after stressor exposure, adolescent females showed decreased firing of locus coeruleus neurons upon current injection and increased exploratory behavior compared to controls. The results were in direct contrast to changes observed in adolescent males, which showed increased anxiety-like behavior and increased spontaneous and induced firing in locus coeruleus neurons a week after stressor exposure. Adult males and females were both behaviorally and electrophysiologically resilient to the long-term effects of acute stress. Therefore, there may be a normal developmental trajectory for locus coeruleus neurons which promotes stress resilience in adults, but stressor exposure during adolescence perturbs their function. Furthermore, while locus coeruleus neurons are more sensitive to stressor exposure during adolescence, the effect varies between adolescent males and females. These findings suggest that endocrine, behavioral, and physiological responses to stress vary among animals of different age and sex, and therefore these variables should be taken into account when selecting models and designing experiments to investigate the effects of stress. These differences in animals may also allude to age and sex differences in the prevalence of various psychiatric illnesses within the human population.

14.
J Neurosci ; 30(3): 939-49, 2010 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-20089902

RESUMEN

Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) is known to contribute to the expression of psychostimulant sensitization by regulating dopamine (DA) overflow from DA neuron terminals in the nucleus accumbens (NAcc). The present experiments explored the contribution of CaMKII in NAcc neurons postsynaptic to these terminals where it is known to participate in a number of signaling pathways that regulate responding to psychostimulant drugs. Exposure to amphetamine transiently increased alphaCaMKII levels in the shell but not the core of the NAcc. Thus, HSV (herpes simplex viral) vectors were used to transiently overexpress alphaCaMKII in NAcc neurons in drug-naive rats, and behavioral responding to amphetamine was assessed. Transiently overexpressing alphaCaMKII in the NAcc shell led to long-lasting enhancement of amphetamine-induced locomotion and self-administration manifested when alphaCaMKII levels were elevated and persisting long after they had returned to baseline. Enhanced locomotion was not observed after infection in the NAcc core or sites adjacent to the NAcc. Transient elevation of NAcc shell alphaCaMKII levels also enhanced locomotor responding to NAcc AMPA and increased phosphorylation levels of GluR1 (Ser831), a CaMKII site, both soon and long after infection. Similar increases in pGluR1 (Ser831) were observed both soon and long after exposure to amphetamine. These results indicate that the transient increase in alphaCaMKII observed in neurons of the NAcc shell after viral-mediated gene transfer and likely exposure to amphetamine leads to neuroadaptations in AMPA receptor signaling in this site that may contribute to the long-lasting maintenance of behavioral and incentive sensitization by psychostimulant drugs like amphetamine.


Asunto(s)
Anfetaminas/farmacología , Conducta Animal/efectos de los fármacos , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Estimulantes del Sistema Nervioso Central/farmacología , Expresión Génica/fisiología , Núcleo Accumbens/efectos de los fármacos , Análisis de Varianza , Animales , Ácido Aspártico/genética , Proteína de Unión a CREB/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/genética , Condicionamiento Operante/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Técnicas de Transferencia de Gen , Masculino , Actividad Motora/efectos de los fármacos , Ratas , Ratas Long-Evans , Ratas Sprague-Dawley , Receptores AMPA/genética , Receptores AMPA/metabolismo , Autoadministración/métodos , Serina/metabolismo , Treonina/genética , Factores de Tiempo
15.
J Neurochem ; 118(2): 237-47, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21564097

RESUMEN

The closely related δ and ε isoforms of the serine/threonine protein kinase casein kinase 1 (Csnk1) have been implicated in the generation of psychostimulant-induced behaviors. In this study, we show that Csnk1δ/ε produces its effects on behavior by acting on the Darpp-32-PP1 signaling pathway to regulate AMPA receptor phosphorylation in the nucleus accumbens (NAcc). Inhibiting Csnk1δ/ε in the NAcc with the selective inhibitor PF-670462 blocks amphetamine induced locomotion and its ability to increase phosphorylation of Darpp-32 at S137 and T34, decrease PP1 activity and increase phosphorylation of the AMPA receptor subunit at S845. Consistent with these findings, preventing GluR1 phosphorylation with the alanine mutant GluR1(S845A) reduces glutamate-evoked currents in cultured medium spiny neurons and blocks the locomotor activity produced by NAcc amphetamine. Thus, Csnk1 enables the locomotor and likely the incentive motivational effects of amphetamine by regulating Darrp-32-PP1-GlurR1(S845) signaling in the NAcc. As such, Csnk1 may be a critical target for intervention in the treatment of drug use disorders.


Asunto(s)
Anfetamina/farmacología , Caseína Cinasa 1 épsilon/fisiología , Quinasa Idelta de la Caseína/fisiología , Actividad Motora/fisiología , Núcleo Accumbens/fisiología , Receptores AMPA/metabolismo , Animales , Ácido Glutámico/fisiología , Masculino , Actividad Motora/efectos de los fármacos , Núcleo Accumbens/efectos de los fármacos , Fosforilación/fisiología , Isoformas de Proteínas/fisiología , Ratas , Ratas Sprague-Dawley , Receptores AMPA/fisiología
16.
eNeuro ; 8(4)2021.
Artículo en Inglés | MEDLINE | ID: mdl-34290059

RESUMEN

Cocaine addiction is a devastating public health epidemic that continues to grow. Studies focused on identifying biological factors influencing cocaine craving and relapse vulnerability are necessary to promote abstinence in recovering drug users. Sex and ovarian hormones are known to influence cocaine addiction liability and relapse vulnerability in both humans and rodents. Previous studies have investigated sex differences in the time-dependent intensification or "incubation" of cue-induced cocaine craving that occurs during withdrawal from extended-access cocaine self-administration and have identified changes across the rat reproductive cycle (estrous cycle). Female rats in the estrus stage of the cycle (Estrus Females), the phase during which ovulation occurs, show an increase in the magnitude of incubated cue-induced cocaine craving compared with females in all other phases of the estrous cycle (Non-Estrus Females). Here we extend these findings by assessing incubated craving across the estrous cycle during earlier withdrawal periods (withdrawal day 1 and 15) and later withdrawal periods (withdrawal day 48). We found that this increase in the magnitude of incubated craving during estrus (Estrus Females) is present on withdrawal day 15, but not on withdrawal day 1, and further increases by withdrawal day 48. No difference in the magnitude of incubated craving was observed between Males and Non-Estrus Females. Our data indicate that the effects of hormonal fluctuations on cue-induced cocaine craving intensify during the first month and a half of withdrawal, showing an interaction among abstinence length, estrous cycle fluctuations, and cocaine craving.


Asunto(s)
Trastornos Relacionados con Cocaína , Cocaína , Animales , Ansia , Señales (Psicología) , Ciclo Estral , Femenino , Masculino , Ratas
17.
Neuropharmacology ; 186: 108452, 2021 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-33444640

RESUMEN

Many studies have demonstrated that negative allosteric modulators (NAM) of metabotropic glutamate receptor 5 (mGlu5) reduce cocaine and methamphetamine seeking in extinction-reinstatement animal models of addiction. Less is known about effects of mGlu5 NAMs in abstinence models, particularly for methamphetamine. We used the incubation of drug craving model, in which cue-induced craving progressively intensifies after withdrawal from drug self-administration, to conduct the first studies of the following aspects of mGlu5 function in the rat nucleus accumbens (NAc) core during abstinence from methamphetamine self-administration: 1) functionality of the major form of synaptic depression in NAc medium spiny neurons, which is induced postsynaptically via mGlu5 and expressed presynaptically via cannabinoid type 1 receptors (CB1Rs), 2) mGlu5 surface expression and physical associations between mGlu5, Homer proteins, and diacylglycerol lipase-α, and 3) the effect of systemic and intra-NAc core administration of the mGlu5 NAM 3-((2-methyl-4-)ethynyl)pyridine (MTEP) on expression of incubated methamphetamine craving. We found that mGlu5/CB1R-dependent synaptic depression was lost during the rising phase of methamphetamine incubation but then recovered, in contrast to its persistent impairment during the plateau phase of incubation of cocaine craving. Furthermore, whereas the cocaine-induced impairment was accompanied by reduced mGlu5 levels and mGlu5-Homer associations, this was not the case for methamphetamine. Systemic MTEP reduced incubated methamphetamine seeking, but also reduced inactive hole nose-pokes and locomotion, while intra-NAc core MTEP had no significant effects. These findings provide the first insight into the role of mGlu5 in the incubation of methamphetamine craving and reveal differences from incubation of cocaine craving.


Asunto(s)
Ansia/efectos de los fármacos , Metanfetamina/administración & dosificación , Núcleo Accumbens/efectos de los fármacos , Núcleo Accumbens/metabolismo , Receptor del Glutamato Metabotropico 5/metabolismo , Animales , Ansia/fisiología , Inhibidores de Captación de Dopamina/administración & dosificación , Comportamiento de Búsqueda de Drogas/efectos de los fármacos , Comportamiento de Búsqueda de Drogas/fisiología , Masculino , Ratas , Ratas Sprague-Dawley , Autoadministración
18.
Neuropsychopharmacology ; 44(9): 1534-1541, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31146278

RESUMEN

Cue-induced drug craving progressively intensifies after withdrawal from self-administration of cocaine, methamphetamine, and other drugs of abuse, a phenomenon termed incubation of craving. For cocaine and methamphetamine, expression of incubated craving ultimately depends on strengthening of nucleus accumbens (NAc) synapses through an accumulation of high conductance Ca2+-permeable AMPA receptors (CP-AMPARs) that is detectable with electrophysiological approaches. This study sought to further characterize glutamate receptor adaptations in NAc core during methamphetamine incubation. Previous biochemical studies revealed that the CP-AMPARs accumulating after cocaine incubation are mainly homomeric GluA1 receptors and that their accumulation is reflected by increased cell surface GluA1. Here, for methamphetamine, we observed no significant change in surface or total GluA1 (GluA2 and GluA3 were also unchanged). Nonetheless, GluA1 translation was elevated after incubation of methamphetamine craving, as recently found for cocaine. Additionally, for cocaine, we previously observed a withdrawal-dependent decrease in mGlu1 surface expression that precedes and enables CP-AMPAR accumulation and incubation of craving, reflecting weakening of mGlu1-dependent mechanisms that normally limit synaptic CP-AMPAR levels in the NAc core. Here, we observed no change in surface or total mGlu1 protein or its coupling to Homer scaffolding proteins after methamphetamine withdrawal, nor did elevation of mGlu1 tone through repeated injections of an mGlu1-positive allosteric modulator delay incubation of craving. These findings suggest a common role for increased GluA1 translation, but not decreased mGlu1 function, in the incubation of methamphetamine and cocaine craving. We speculate that increased GluA1 translation near synapses may drive formation and synaptic insertion of homomeric GluA1 receptors in the absence of detectable changes in GluA1 protein levels.


Asunto(s)
Ansia/fisiología , Proteínas de Andamiaje Homer/metabolismo , Metanfetamina , Núcleo Accumbens/metabolismo , Receptores AMPA/genética , Receptores de Glutamato Metabotrópico/genética , Regulación Alostérica , Trastornos Relacionados con Anfetaminas/genética , Trastornos Relacionados con Anfetaminas/metabolismo , Animales , Señales (Psicología) , Biosíntesis de Proteínas , Ratas , Receptores AMPA/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Síndrome de Abstinencia a Sustancias/genética , Síndrome de Abstinencia a Sustancias/metabolismo
19.
Neurosci Lett ; 444(2): 157-60, 2008 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-18694805

RESUMEN

Microinjection of the calcium/calmodulin-dependent protein kinase II (CaMKII) inhibitor KN-93 into the nucleus accumbens (NAcc) shell impairs expression of the sensitized locomotion and NAcc dopamine (DA) overflow normally observed in psychostimulant-exposed rats. Based on these results, we investigated the effect of NAcc shell KN-93 on the enhanced amphetamine (AMPH) intake normally observed in AMPH- relative to saline-exposed rats. Rats were administered five injections of either AMPH (1.5mg/kg, i.p.) or saline, one injection every 2-3 days. Fourteen days following the last injection, they were trained to self-administer AMPH (200 microg/kg/infusion, i.v.) first on fixed ratio schedules (FR) and then on a progressive ratio schedule of reinforcement (PR). As expected, AMPH-exposed rats worked harder and obtained significantly more drug infusions than saline-exposed rats on the PR schedule. After 4 days of stable responding, all rats were bilaterally microinjected with KN-93 (1 or 10 nmol/0.5 microl/side) into the NAcc shell, 2 min prior to the beginning of the self-administration session. Inhibiting CaMKII in this site reduced the enhanced drug intake observed in AMPH-exposed rats to levels no longer significantly different from those of saline-exposed rats. Responding in these latter controls was not affected by KN-93 nor did KN-93 affect responding in AMPH-exposed rats when it was infused into the NAcc core. Thus, in a manner similar to what has been reported for sensitized locomotion and NAcc DA overflow, these results suggest that inhibiting CaMKII in the NAcc shell attenuates the enhanced motivation to obtain a drug reinforcer that is normally displayed in AMPH-exposed rats.


Asunto(s)
Anfetamina/farmacología , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/antagonistas & inhibidores , Estimulantes del Sistema Nervioso Central/farmacología , Núcleo Accumbens/enzimología , Anfetamina/administración & dosificación , Animales , Bencilaminas/administración & dosificación , Bencilaminas/farmacología , Estimulantes del Sistema Nervioso Central/administración & dosificación , Condicionamiento Operante , Masculino , Microinyecciones , Ratas , Ratas Long-Evans , Esquema de Refuerzo , Autoadministración , Sulfonamidas/administración & dosificación , Sulfonamidas/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA