Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 173
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Am J Physiol Lung Cell Mol Physiol ; 324(2): L211-L227, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36625471

RESUMEN

The development of new drugs for idiopathic pulmonary fibrosis strongly relies on preclinical experimentation, which requires the continuous improvement of animal models and integration with in vivo imaging data. Here, we investigated the lung distribution of bleomycin (BLM) associated with the indocyanine green (ICG) dye by fluorescence imaging. A long-lasting lung retention (up to 21 days) was observed upon oropharyngeal aspiration (OA) of either ICG or BLM + ICG, with significantly more severe pulmonary fibrosis, accompanied by the progressive appearance of emphysema-like features, uniquely associated with the latter combination. More severe and persistent lung fibrosis, together with a progressive air space enlargement uniquely associated with the BLM + ICG group, was confirmed by longitudinal micro-computed tomography (CT) and histological analyses. Multiple inflammation and fibrosis biomarkers were found to be increased in the bronchoalveolar lavage fluid of BLM- and BLM + ICG-treated animals, but with a clear trend toward a much stronger increase in the latter group. Similarly, in vitro assays performed on macrophage and epithelial cell lines revealed a significantly more marked cytotoxicity in the case of BLM + ICG-treated mice. Also unique to this group was the synergistic upregulation of apoptotic markers both in lung sections and cell lines. Although the exact mechanism underlying the more intense lung fibrosis phenotype with emphysema-like features induced by BLM + ICG remains to be elucidated, we believe that this combination treatment, whose overall effects more closely resemble the human disease, represents a valuable alternative model for studying fibrosis development and for the identification of new antifibrotic compounds.


Asunto(s)
Enfisema , Fibrosis Pulmonar Idiopática , Enfisema Pulmonar , Humanos , Ratones , Animales , Bleomicina , Microtomografía por Rayos X , Pulmón/diagnóstico por imagen , Pulmón/patología , Enfisema Pulmonar/inducido químicamente , Enfisema Pulmonar/diagnóstico por imagen , Enfisema Pulmonar/patología , Líquido del Lavado Bronquioalveolar , Fibrosis Pulmonar Idiopática/inducido químicamente , Fibrosis Pulmonar Idiopática/diagnóstico por imagen , Fibrosis Pulmonar Idiopática/patología , Enfisema/patología , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL
2.
Artículo en Inglés | MEDLINE | ID: mdl-38017325

RESUMEN

PURPOSE: Multifocal disease in PTC is associated with an increased recurrence rate. Multifocal disease (MD) is underdiagnosed with the current gold standard of pre-operative ultrasound staging. Here, we evaluate the use of EMI-137 targeted molecular fluorescence-guided imaging (MFGI) and spectroscopy as a tool for the intra-operative detection of uni- and multifocal papillary thyroid cancer (PTC) aiming to improve disease staging and treatment selection. METHODS: A phase-1 study (NCT03470259) with EMI-137 was conducted to evaluate the possibility of detecting PTC using MFGI and quantitative fiber-optic spectroscopy. RESULTS: Fourteen patients underwent hemi- or total thyroidectomy (TTX) after administration of 0.09 mg/kg (n = 1), 0.13 mg/kg (n = 8), or 0.18 mg/kg (n = 5) EMI-137. Both MFGI and spectroscopy could differentiate PTC from healthy thyroid tissue after administration of EMI-137, which binds selectively to MET in PTC. 0.13 mg/kg was the lowest dosage EMI-137 that allowed for differentiation between PTC and healthy thyroid tissue. The smallest PTC focus detected by MFGI was 1.4 mm. MFGI restaged 80% of patients from unifocal to multifocal PTC compared to ultrasound. CONCLUSION: EMI-137-guided MFGI and spectroscopy can be used to detect multifocal PTC. This may improve disease staging and treatment selection between hemi- and total thyroidectomy by better differentiation between unifocal and multifocal disease. TRIAL REGISTRATION: NCT03470259.

3.
Eur J Nucl Med Mol Imaging ; 49(10): 3557-3570, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35389070

RESUMEN

PURPOSE: Patients undergoing prophylactic central compartment dissection (PCLND) for papillary thyroid cancer (PTC) are often overtreated. This study aimed to determine if molecular fluorescence-guided imaging (MFGI) and spectroscopy can be useful for detecting PTC nodal metastases (NM) and to identify negative central compartments intraoperatively. METHODS: We used a data-driven prioritization strategy based on transcriptomic profiles of 97 primary PTCs and 80 normal thyroid tissues (NTT) to identify tumor-specific antigens for a clinically available near-infrared fluorescent tracer. Protein expression of the top prioritized antigen was immunohistochemically validated with a tissue microarray containing primary PTC (n = 741) and NTT (n = 108). Staining intensity was correlated with 10-year locoregional recurrence-free survival (LRFS). A phase 1 study (NCT03470259) with EMI-137, targeting MET, was conducted to evaluate safety, optimal dosage for detecting PTC NM with MFGI, feasibility of NM detection with quantitative fiber-optic spectroscopy, and selective binding of EMI-137 for MET. RESULTS: MET was selected as the most promising antigen. A worse LRFS was observed in patients with positive versus negative MET staining (81.9% versus 93.2%; p = 0.02). In 19 patients, no adverse events related to EMI-137 occurred. 0.13 mg/kg EMI-137 was selected as optimal dosage for differentiating NM from normal lymph nodes using MFGI (p < 0.0001) and spectroscopy (p < 0.0001). MFGI identified 5/19 levels (26.3%) without NM. EMI-137 binds selectively to MET. CONCLUSION: MET is overexpressed in PTC and associated with increased locoregional recurrence rates. Perioperative administration of EMI-137 is safe and facilitates NM detection using MFGI and spectroscopy, potentially reducing the number of negative PCLNDs with more than 25%. CLINICAL TRIAL REGISTRATION: NCT03470259.


Asunto(s)
Carcinoma Papilar , Carcinoma , Neoplasias de la Tiroides , Carcinoma/patología , Carcinoma Papilar/diagnóstico por imagen , Humanos , Ganglios Linfáticos/patología , Recurrencia Local de Neoplasia/patología , Análisis Espectral , Cáncer Papilar Tiroideo/diagnóstico por imagen , Neoplasias de la Tiroides/patología , Tiroidectomía
4.
Lancet Oncol ; 22(5): e186-e195, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33765422

RESUMEN

Fluorescence-guided surgery is an intraoperative optical imaging method that provides surgeons with real-time guidance for the delineation of tumours. Currently, in phase 1 and 2 clinical trials, evaluation of fluorescence-guided surgery is primarily focused on its diagnostic performance, although the corresponding outcome variables do not inform about the added clinical benefit of fluorescence-guided surgery and are challenging to assess objectively. Nonetheless, the effect of fluorescence-guided surgery on intraoperative decision making is the most objective outcome measurement to assess the clinical value of this imaging method. In this Review, we explore the study designs of existing trials of fluorescence-guided surgery that allow us to extract information on potential changes in intraoperative decision making, such as additional or more conservative resections. On the basis of this analysis, we offer recommendations on how to report changes in intraoperative decision making that result from fluorescence imaging, which is of utmost importance for the widespread clinical implementation of fluorescence-guided surgery.


Asunto(s)
Toma de Decisiones , Neoplasias/cirugía , Imagen Óptica/métodos , Cirugía Asistida por Computador/métodos , Ensayos Clínicos como Asunto , Fluorescencia , Humanos , Periodo Intraoperatorio , Proyectos de Investigación
5.
Cell Tissue Res ; 381(1): 55-69, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32036485

RESUMEN

Traumatic brain injury (TBI) is a devastating event for which current therapies are limited. Stem cell transplantation may lead to recovery of function via different mechanisms, such as cell replacement through differentiation, stimulation of angiogenesis and support to the microenvironment. Adult hair follicle bulge-derived stem cells (HFBSCs) possess neuronal differentiation capacity, are easy to harvest and are relatively immune-privileged, which makes them potential candidates for autologous stem cell-based therapy. In this study, we apply in vivo multimodal, optical and magnetic resonance imaging techniques to investigate the behavior of mouse HFBSCs in a mouse model of TBI. HFBSCs expressed Luc2 and copGFP and were examined for their differentiation capacity in vitro. Subsequently, transduced HFBSCs, preloaded with ferumoxytol, were transplanted next to the TBI lesion (cortical region) in nude mice, 2 days after injury. Brains were fixed for immunohistochemistry 58 days after transplantation. Luc2- and copGFP-expressing, ferumoxytol-loaded HFBSCs showed adequate neuronal differentiation potential in vitro. Bioluminescence of the lesioned brain revealed survival of HFBSCs and magnetic resonance imaging identified their localization in the area of transplantation. Immunohistochemistry showed that transplanted cells stained for nestin and neurofilament protein (NF-Pan). Cells also expressed laminin and fibronectin but extracellular matrix masses were not detected. After 58 days, ferumoxytol could be detected in HFBSCs in brain tissue sections. These results show that HFBSCs are able to survive after brain transplantation and suggest that cells may undergo differentiation towards a neuronal cell lineage, which supports their potential use for cell-based therapy for TBI.


Asunto(s)
Lesiones Traumáticas del Encéfalo/diagnóstico por imagen , Lesiones Traumáticas del Encéfalo/terapia , Folículo Piloso/citología , Trasplante de Células Madre , Animales , Diferenciación Celular , Femenino , Imagen por Resonancia Magnética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Desnudos , Células Madre
6.
Int J Mol Sci ; 21(16)2020 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-32824188

RESUMEN

Reporter genes are used to visualize intracellular biological phenomena, including viral infection. Here we demonstrate bioluminescent imaging of viral infection using the NanoBiT system in combination with intraperitoneal injection of a furimazine analogue, hydrofurimazine. This recently developed substrate has enhanced aqueous solubility allowing delivery of higher doses for in vivo imaging. The small high-affinity peptide tag (HiBiT), which is only 11 amino-acids in length, was engineered into a clinically used oncolytic adenovirus, and the complementary large protein (LgBiT) was constitutively expressed in tumor cells. Infection of the LgBiT expressing cells with the HiBiT oncolytic virus will reconstitute NanoLuc in the cytosol of the cell, providing strong bioluminescence upon treatment with substrate. This new bioluminescent system served as an early stage quantitative viral transduction reporter in vitro and also in vivo in mice, for longitudinal monitoring of oncolytic viral persistence in infected tumor cells. This platform provides novel opportunities for studying the biology of viruses in animal models.


Asunto(s)
Furanos/farmacocinética , Imidazoles/farmacocinética , Sustancias Luminiscentes/farmacocinética , Proteínas Luminiscentes/genética , Imagen Óptica/métodos , Pirazinas/farmacocinética , Virosis/diagnóstico por imagen , Adenoviridae/genética , Animales , Línea Celular Tumoral , Furanos/administración & dosificación , Células HEK293 , Humanos , Imidazoles/administración & dosificación , Inyecciones Intraperitoneales , Sustancias Luminiscentes/administración & dosificación , Proteínas Luminiscentes/metabolismo , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Oligopéptidos/genética , Oligopéptidos/metabolismo , Virus Oncolíticos/genética , Pirazinas/administración & dosificación , Proteínas Recombinantes/genética
7.
Liver Transpl ; 25(7): 1091-1104, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31077562

RESUMEN

Cell death is a natural process for the turnover of aged cells, but it can also arise as a result of pathological conditions. Cell death is recognized as a key feature in both acute and chronic hepatobiliary diseases caused by drug, alcohol, and fat uptake; by viral infection; or after surgical intervention. In the case of chronic disease, cell death can lead to (chronic) secondary inflammation, cirrhosis, and the progression to liver cancer. In liver transplantation, graft preservation and ischemia/reperfusion injury are associated with acute cell death. In both cases, so-called programmed cell death modalities are involved. Several distinct types of programmed cell death have been described of which apoptosis and necroptosis are the most well known. Parenchymal liver cells, including hepatocytes and cholangiocytes, are susceptible to both apoptosis and necroptosis, which are triggered by distinct signal transduction pathways. Apoptosis is dependent on a proteolytic cascade of caspase enzymes, whereas necroptosis induction is caspase-independent. Moreover, different from the "silent" apoptotic cell death, necroptosis can cause a secondary inflammatory cascade, so-called necroinflammation, triggered by the release of various damage-associated molecular patterns (DAMPs). These DAMPs activate the innate immune system, leading to both local and systemic inflammatory responses, which can even cause remote organ failure. Therapeutic targeting of necroptosis by pharmacological inhibitors, such as necrostatin-1, shows variable effects in different disease models.


Asunto(s)
Enfermedad Hepática en Estado Terminal/inmunología , Rechazo de Injerto/inmunología , Trasplante de Hígado/efectos adversos , Hígado/patología , Necroptosis/inmunología , Animales , Modelos Animales de Enfermedad , Enfermedad Hepática en Estado Terminal/patología , Enfermedad Hepática en Estado Terminal/cirugía , Rechazo de Injerto/patología , Rechazo de Injerto/prevención & control , Hepatocitos/efectos de los fármacos , Hepatocitos/patología , Humanos , Imidazoles/farmacología , Imidazoles/uso terapéutico , Indoles/farmacología , Indoles/uso terapéutico , Hígado/citología , Hígado/inmunología , Necroptosis/efectos de los fármacos
8.
Croat Med J ; 57(2): 89-98, 2016 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-27106351

RESUMEN

AIM: To evaluate the impact of previously unrecognized negative interaction between the Wnt and interleukin (IL) 6 signaling pathways in skeletal tissues as a possible major mechanism leading to age- and inflammation-related destruction of bone and joints. METHODS: Luciferase reporter assays were performed to monitor Wnt pathway activation upon IL-6 and tumor necrosis factor-α (TNFα) treatment. Functional contribution of IL-6 and TNFα interaction to inhibition of bone formation was evaluated in vitro using small hairpin RNAs (shRNA) in mouse mesenchymal precursor cells (MPC) of C2C12 and KS483 lines induced to differentiate into osteoblasts by bone morphogenetic proteins (BMP). RESULTS: IL-6 inhibited the activation of Wnt signaling in primary human synoviocytes, and, together with TNFα and Dickkopf-1, inhibited the activation of Wnt response. ShRNA-mediated knockdown of IL-6 mRNA significantly increased early BMP2/7-induced osteogenesis and rescued it from the negative effect of TNFα in C2C12 cells, as well as intensified bone matrix mineralization in KS483 cells. CONCLUSION: IL-6 is an important mediator in the inhibition of osteoblast differentiation by TNFα, and knockdown of IL-6 partially rescues osteogenesis from the negative control of inflammation. The anti-osteoblastic effects of IL-6 are most likely mediated by its negative interaction with Wnt signaling pathway.


Asunto(s)
Artritis Reumatoide/fisiopatología , Fibroblastos/metabolismo , Osteoblastos/metabolismo , Proteínas Wnt/metabolismo , Vía de Señalización Wnt , Animales , Artritis Reumatoide/metabolismo , Artritis Reumatoide/patología , Proteínas Morfogenéticas Óseas/metabolismo , Línea Celular/metabolismo , Humanos , Interleucina-6/farmacología , Ratones , Transducción de Señal/fisiología , Membrana Sinovial/citología , Factor de Necrosis Tumoral alfa/farmacología , Vía de Señalización Wnt/efectos de los fármacos
9.
J Cell Biochem ; 116(12): 2938-46, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26095393

RESUMEN

Both bone morphogenetic protein (BMP) and Wnt signaling have significant roles in osteoblast differentiation and the interaction between BMP and Wnt signaling is well known. Sclerostin is an important inhibitor of bone formation, inhibiting Wnt signaling and downstream effects of BMP such as alkaline phosphatase activity and matrix mineralization in vitro. However, little is known about the effect of BMP and Wnt signaling interaction on the regulation of SOST, the gene encoding sclerostin. Possibly, uncoupling of osteoblast differentiation regulators and SOST expression could increase osteoblast differentiation. Therefore, we investigated the effect of BMP and Wnt signaling interaction on the expression of SOST and the subsequent effect on osteoblast differentiation. Human osteosarcoma cells (SaOS-2) and murine pre-osteoblast cells (KS483) were treated with different concentrations of Wnt3a, a specific GSK3ß inhibitor (GIN) and BMP4. Both Wnt3a and GIN increased BMP4-induced BMP signaling and BMP4 increased Wnt3a and GIN-induced Wnt signaling. However, the effect of GIN was much stronger. Quantitative RT-PCR analysis showed that SOST expression dose-dependently decreased with increasing Wnt signaling, while BMP4 induced SOST expression. GIN significantly decreased the BMP4-induced SOST expression. This resulted in an increased osteoblast differentiation as measured by ALP activity in the medium and matrix mineralization. We conclude that GSK3ß inhibition by GIN caused an uncoupling of BMP signaling and SOST expression, resulting in an increased BMP4-induced osteoblast differentiation. This effect can possibly be used in clinical practice to induce local bone formation, for example, fracture healing or osseointegration of implants.


Asunto(s)
Proteínas Morfogenéticas Óseas/biosíntesis , Diferenciación Celular/genética , Glucógeno Sintasa Quinasa 3/metabolismo , Osteoblastos/metabolismo , Osteogénesis/genética , Proteínas Adaptadoras Transductoras de Señales , Animales , Proteína Morfogenética Ósea 4/antagonistas & inhibidores , Proteína Morfogenética Ósea 4/metabolismo , Proteínas Morfogenéticas Óseas/metabolismo , Diferenciación Celular/efectos de los fármacos , Línea Celular , Regulación de la Expresión Génica , Marcadores Genéticos , Glucógeno Sintasa Quinasa 3/antagonistas & inhibidores , Glucógeno Sintasa Quinasa 3 beta , Humanos , Ratones , Osteogénesis/efectos de los fármacos , Vía de Señalización Wnt/efectos de los fármacos , Vía de Señalización Wnt/genética , Proteína Wnt3A/administración & dosificación , Proteína Wnt3A/metabolismo , beta Catenina/metabolismo
10.
Histochem Cell Biol ; 144(1): 1-11, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25850409

RESUMEN

Osteocytes are the predominant cells in bone, where they form a cellular network and display important functions in bone homeostasis, phosphate metabolism and mechanical transduction. Several proteins strongly expressed by osteocytes are involved in these processes, e.g., sclerostin, DMP-1, PHEX, FGF23 and MEPE, while others are upregulated during differentiation of osteoblasts into osteocytes, e.g., osteocalcin and E11. The receptor-type protein tyrosine phosphatase µ (RPTPµ) has been described to be expressed in cells which display a cellular network, e.g., endothelial and neuronal cells, and is implied in mechanotransduction. In a capillary outgrowth assay using metatarsals derived from RPTPµ-knock-out/LacZ knock-in mice, we observed that the capillary structures grown out of the metatarsals were stained blue, as expected. Surprisingly, cells within the metatarsal bone tissue were positive for LacZ activity as well, indicating that RPTPµ is also expressed by osteocytes. Subsequent histochemical analysis showed that within bone, RPTPµ is expressed exclusively in early-stage osteocytes. Analysis of bone marrow cell cultures revealed that osteocytes are present in the nodules and an enzymatic assay enabled the quantification of the amount of osteocytes. No apparent bone phenotype was observed when tibiae of RPTPµ-knock-out/LacZ knock-in mice were analyzed by µCT at several time points during aging, although a significant reduction in cortical bone was observed in RPTPµ-knock-out/LacZ knock-in mice at 20 weeks. Changes in trabecular bone were more subtle. Our data show that RPTPµ is a new marker for osteocytes.


Asunto(s)
Huesos Metatarsianos/citología , Osteocitos/enzimología , Proteínas Tirosina Fosfatasas Clase 2 Similares a Receptores/metabolismo , Animales , Biomarcadores , Células de la Médula Ósea/enzimología , Huesos/diagnóstico por imagen , Factor-23 de Crecimiento de Fibroblastos , Técnicas de Sustitución del Gen , Histocitoquímica , Mecanotransducción Celular , Huesos Metatarsianos/crecimiento & desarrollo , Ratones , Ratones Noqueados , Osteogénesis , Tomografía Computarizada por Rayos X
11.
Biochem Biophys Res Commun ; 443(1): 80-5, 2014 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-24269236

RESUMEN

Alizarin Red S staining is the standard method to indicate and quantify matrix mineralization during differentiation of osteoblast cultures. KS483 cells are multipotent mouse mesenchymal progenitor cells that can differentiate into chondrocytes, adipocytes and osteoblasts and are a well-characterized model for the study of bone formation. Matrix mineralization is the last step of differentiation of bone cells and is therefore a very important outcome measure in bone research. Fluorescently labelled calcium chelating agents, e.g. BoneTag and OsteoSense, are currently used for in vivo imaging of bone. The aim of the present study was to validate these probes for fast and simple detection and quantification of in vitro matrix mineralization by KS483 cells and thus enabling high-throughput screening experiments. KS483 cells were cultured under osteogenic conditions in the presence of compounds that either stimulate or inhibit osteoblast differentiation and thereby matrix mineralization. After 21 days of differentiation, fluorescence of stained cultures was quantified with a near-infrared imager and compared to Alizarin Red S quantification. Fluorescence of both probes closely correlated to Alizarin Red S staining in both inhibiting and stimulating conditions. In addition, both compounds displayed specificity for mineralized nodules. We therefore conclude that this method of quantification of bone mineralization using fluorescent compounds is a good alternative for the Alizarin Red S staining.


Asunto(s)
Calcificación Fisiológica/fisiología , Colorantes Fluorescentes , Imagen Molecular/métodos , Osteogénesis/fisiología , Animales , Antraquinonas , Diferenciación Celular , Línea Celular , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/fisiología , Ratones , Osteoblastos/fisiología , Coloración y Etiquetado/métodos
12.
Ann Surg Oncol ; 21 Suppl 4: S528-37, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24515567

RESUMEN

BACKGROUND: Irradical tumor resections and iatrogenic ureteral injury remain a significant problem during lower abdominal surgery. The aim of the current study was to intraoperatively identify both colorectal tumors and ureters in subcutaneous and orthotopic animal models using cRGD-ZW800-1 and near-infrared (NIR) fluorescence. METHODS: The zwitterionic fluorophore ZW800-1 was conjugated to the tumor specific peptide cRGD (targeting integrins) and to the a-specific peptide cRAD. One nmol cRGD-ZW800-1, cRAD-ZW800-1, or ZW800-1 alone was injected in mice bearing subcutaneous HT-29 human colorectal tumors. Subsequently, cRGD-ZW800-1 was injected at dosages of 0.25 and 1 nmol in mice bearing orthotopic HT-29 tumors transfected with luciferase2. In vivo biodistribution and ureteral visualization were investigated in rats. Fluorescence was measured intraoperatively at several time points after probe administration using the FLARE imaging system. RESULTS: Both subcutaneous and orthotopic tumors could be clearly identified using cRGD-ZW800-1. A significantly higher signal-to-background ratio was observed in mice injected with cRGD-ZW800-1 (2.42 ± 0.77) compared with mice injected with cRAD-ZW800-1 or ZW800-1 alone (1.21 ± 0.19 and 1.34 ± 0.19, respectively) when measured at 24 h after probe administration. The clearance of cRGD-ZW800-1 permitted visualization of the ureters and also generated minimal background fluorescence in the gastrointestinal tract. CONCLUSIONS: This study appears to be the first to demonstrate both clear tumor demarcation and ureteral visualization after a single intravenous injection of a targeted NIR fluorophore. As a low dose of cRGD-ZW800-1 provided clear tumor identification, clinical translation of these results should be possible.


Asunto(s)
Neoplasias Colorrectales/diagnóstico , Colorantes Fluorescentes , Imagen Óptica/métodos , Péptidos Cíclicos , Compuestos de Amonio Cuaternario , Ácidos Sulfónicos , Uréter , Animales , Neoplasias Colorrectales/cirugía , Femenino , Colorantes Fluorescentes/administración & dosificación , Colorantes Fluorescentes/farmacocinética , Células HT29 , Humanos , Integrinas , Periodo Intraoperatorio , Ratones , Trasplante de Neoplasias , Péptidos Cíclicos/administración & dosificación , Péptidos Cíclicos/farmacocinética , Compuestos de Amonio Cuaternario/administración & dosificación , Compuestos de Amonio Cuaternario/farmacocinética , Ácidos Sulfónicos/administración & dosificación , Ácidos Sulfónicos/farmacocinética
13.
Pharm Res ; 31(1): 216-27, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23949250

RESUMEN

PURPOSE: To monitor the biodistribution of IgG1 aggregates upon subcutaneous (SC) and intravenous (IV) administration in mice and measure their propensity to stimulate an early immune response. METHODS: A human mAb (IgG1) was fluorescently labeled, aggregated by agitation stress and injected in SKH1 mice through SC and IV routes. The biodistribution of monomeric and aggregated formulations was monitored over 47 days by fluorescence imaging and the early immune response was measured by quantifying the level of relevant cytokines in serum using a Bio-plex assay. RESULTS: The aggregates remained at the SC injection site for a longer time than monomers but after entry into the systemic circulation disappeared faster than monomers. Upon IV administration, both monomers and aggregates spread rapidly throughout the circulation, and a strong accumulation in the liver was observed for both species. Subsequent removal from the circulation was faster for aggregates than monomers. No accumulation in lymph nodes was observed after SC or IV administration. Administration of monomers and aggregates induced similar cytokine levels, but SC injection resulted in higher cytokine levels than IV administration. CONCLUSION: These results show differences in biodistribution and residence time between IgG1 aggregates and monomers. The long residence time of aggregates at the SC injection site, in conjunction with elevated cytokine levels, may contribute to an enhanced immunogenicity risk of SC injected aggregates compared to that of monomers.


Asunto(s)
Inmunoglobulina G/inmunología , Distribución Tisular/inmunología , Animales , Anticuerpos Monoclonales/inmunología , Citocinas/inmunología , Femenino , Fluorescencia , Humanos , Inyecciones Intravenosas/métodos , Inyecciones Subcutáneas/métodos , Ganglios Linfáticos/inmunología , Ratones , Imagen Óptica/métodos
14.
Anal Bioanal Chem ; 406(23): 5727-34, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24958343

RESUMEN

Fluorescence and bioluminescence imaging have different advantages and disadvantages depending on the application. Bioluminescence imaging is now the most sensitive optical technique for tracking cells, promoter activity studies, or for longitudinal in vivo preclinical studies. Far-red and near-infrared fluorescence imaging have the advantage of being suitable for both ex vivo and in vivo analysis and have translational potential, thanks to the availability of very sensitive imaging instrumentation. Here, we report the development and validation of a new luciferase fusion reporter generated by the fusion of the firefly luciferase Luc2 to the far-red fluorescent protein TurboFP635 by a 14-amino acid linker peptide. Expression of the fusion protein, named TurboLuc, was analyzed in human embryonic kidney cells, (HEK)-293 cells, via Western blot analysis, fluorescence microscopy, and in vivo optical imaging. The created fusion protein maintained the characteristics of the original bioluminescent and fluorescent protein and showed no toxicity when expressed in living cells. To assess the sensitivity of the reporter for in vivo imaging, transfected cells were subcutaneously injected in animals. Detection limits of cells were 5 × 10(3) and 5 × 10(4) cells for bioluminescent and fluorescent imaging, respectively. In addition, hydrodynamics-based in vivo gene delivery using a minicircle vector expressing TurboLuc allowed for the analysis of luminescent signals over time in deep tissue. Bioluminescence could be monitored for over 30 days in the liver of animals. In conclusion, TurboLuc combines the advantages of both bioluminescence and fluorescence and allows for highly sensitive optical imaging ranging from single-cell analysis to in vivo whole-body bioluminescence imaging.


Asunto(s)
Luciferasas de Luciérnaga/química , Mediciones Luminiscentes/métodos , Proteínas Luminiscentes/química , Imagen Óptica/métodos , Análisis de la Célula Individual/métodos , Imagen de Cuerpo Entero/métodos , Animales , Genes Reporteros , Células HEK293 , Humanos , Luciferasas de Luciérnaga/genética , Luciferasas de Luciérnaga/metabolismo , Luminiscencia , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Sensibilidad y Especificidad , Proteína Fluorescente Roja
15.
Lasers Surg Med ; 46(3): 224-34, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24436109

RESUMEN

BACKGROUND AND OBJECTIVE: The effect of photodynamic therapy (PDT) is dependent on the localization of photosensitizer in the treatment volume at the time of illumination. Investigation of photosensitizer pharmacokinetics in and around the treatment volume aids in determining the optimal drug light interval for PDT. MATERIALS AND METHODS: In this paper we have investigated the distribution of the photosensitizers chlorin e6 and Bremachlorin in the oral squamous cell carcinoma cell-line OSC19-Luc-Gfp in a tongue tumor, tumor boundary, invasive tumor boundary, and normal tongue tissue by the use of confocal microscopy of frozen sections. Tongues were harvested at t = [3, 4.5, 6, 24, 48] hours after injection. RESULTS: Both photosensitizers showed a decreasing fluorescence with increasing incubation time, and at all time points higher fluorescence was measured in tumor boundary than in tumor itself. For short incubation times, a higher fluorescence intensity was observed in the invasive tumor border and normal tissue compared to tumor tissue. Bremachlorin showed a small increase in tumor to normal ratio at 24 and 48 hours incubation time. Ce6 was undetectable at 48 hours. We did not find a correlation between photosensitizer localization and the presence of vasculature. CONCLUSION: The modest tumor/tumor boundary to normal selectivity of between 1.2 and 2.5 exhibited by Bremachlorin 24 and 48 hours after administration may allow selective targeting of tongue tumors. Further studies investigating the relationship between Bremachlorin concentration and therapeutic efficacy PDT with long incubation times are warranted.


Asunto(s)
Carcinoma de Células Escamosas/tratamiento farmacológico , Fotoquimioterapia , Fármacos Fotosensibilizantes/farmacocinética , Porfirinas/farmacocinética , Neoplasias de la Lengua/tratamiento farmacológico , Animales , Clorofilidas , Combinación de Medicamentos , Ratones , Ratones Endogámicos BALB C , Microscopía Confocal , Fármacos Fotosensibilizantes/uso terapéutico , Porfirinas/uso terapéutico , Distribución Aleatoria
16.
Differentiation ; 85(4-5): 173-81, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23817083

RESUMEN

It is generally thought that class III ß-tubulin expression is limited to cells of the neural lineage and is therefore often used to identify neurons amongst other cell types, both in vivo and in vitro. Melanocytes are derived from the neural crest and share both morphological features and functional characteristics with peripheral neurons. Here, we show that these similarities extend to class III ß-tubulin (TUBB3) expression, and that human melanocytes express this protein both in vivo and in vitro. In addition, we studied the expression of class III ß-tubulin in two murine melanogenic cell lines and show that expression of this protein starts as melanoblasts mature into melanocytes. Melanin bleaching experiments revealed close proximity between melanin and TUBB3 proteins. In vitro stimulation of primary human melanocytes by α-MSH indicated separate regulatory mechanisms for melanogenesis and to TUBB3 expression. Together, these observations imply that human melanocytes express TUBB3 and that this protein should be recognized as a wider marker for multiple neural crest-derived cells.


Asunto(s)
Linaje de la Célula , Melanocitos/metabolismo , Tubulina (Proteína)/metabolismo , Anciano , Animales , Biomarcadores/metabolismo , Diferenciación Celular , Células Cultivadas , Femenino , Humanos , Melaninas/metabolismo , Melanocitos/citología , Ratones , Cresta Neural/citología , Neuronas/metabolismo , Factores de Transcripción/metabolismo , alfa-MSH/metabolismo
17.
Mol Imaging Biol ; 26(4): 616-627, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38890241

RESUMEN

Photodynamic therapy (PDT) is a light-based anticancer therapy that can induce tumor necrosis and/or apoptosis. Two important factors contributing to the efficacy of PDT are the concentration of the photosensitizer in the tumor tissue and its preferential accumulation in the tumor tissue compared to that in normal tissues. In this study, we investigated the use of optical imaging for monitoring whole-body bio-distribution of the fluorescent (660 nm) photosensitizer Bremachlorin in vivo, in a murine pancreatic ductal adenocarcinoma (PDAC) model. Moreover, we non-invasively, examined the induction of tumor necrosis after PDT treatment using near-infrared fluorescent imaging of the necrosis avid cyanine dye IRDye®-800CW Carboxylate. Using whole-body fluorescence imaging, we observed that Bremachlorin preferentially accumulated in pancreatic tumors. Furthermore, in a longitudinal study we showed that 3 hours after Bremachlorin administration, the fluorescent tumor signal reached its maximum. In addition, the tumor-to-background ratio at all-time points was approximately 1.4. Ex vivo, at 6 hours after Bremachlorin administration, the tumor-to-muscle or -normal pancreas ratio exhibited a greater difference than it did at 24 hours, suggesting that, in terms of efficacy, 6 hours after Bremachlorin administration was an effective time point for PDT treatment of PDAC. In vivo administration of the near infrared fluorescence agent IRDye®-800CW Carboxylate showed that PDT, 6 hours after administration of Bremachlorin, selectively induced necrosis in the tumor tissues, which was subsequently confirmed histologically. In conclusion, by using in vivo fluorescence imaging, we could non-invasively and longitudinally monitor, the whole-body distribution of Bremachlorin. Furthermore, we successfully used IRDye®-800CW Carboxylate, a near-infrared fluorescent necrosis avid agent, to image PDT-induced necrotic cell death as a measure of therapeutic efficacy. This study showed how fluorescence can be applied for optimizing, and assessing the efficacy of, PDT.


Asunto(s)
Carcinoma Ductal Pancreático , Indoles , Necrosis , Imagen Óptica , Neoplasias Pancreáticas , Fotoquimioterapia , Fármacos Fotosensibilizantes , Animales , Fármacos Fotosensibilizantes/química , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/farmacocinética , Ratones , Carcinoma Ductal Pancreático/diagnóstico por imagen , Carcinoma Ductal Pancreático/tratamiento farmacológico , Carcinoma Ductal Pancreático/patología , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/patología , Neoplasias Pancreáticas/diagnóstico por imagen , Indoles/química , Distribución Tisular , Modelos Animales de Enfermedad , Línea Celular Tumoral , Imagen de Cuerpo Entero/métodos , Femenino , Combinación de Medicamentos , Porfirinas
19.
Cancer ; 119(18): 3411-8, 2013 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-23794086

RESUMEN

BACKGROUND: The fundamental principle of oncologic surgery is the complete resection of malignant cells. However, small tumors are often difficult to find during surgery using conventional techniques. The objectives of this study were to determine if optical imaging, using a contrast agent already approved for other indications, could improve hepatic metastasectomy with curative intent, to optimize dose and timing, and to determine the mechanism of contrast agent accumulation. METHODS: The high tissue penetration of near-infrared (NIR) light was exploited by use of the FLARE (Fluorescence-Assisted Resection and Exploration) image-guided surgery system and the NIR fluorophore indocyanine green in a clinical trial of 40 patients undergoing hepatic resection for colorectal cancer metastases. RESULTS: A total of 71 superficially located (< 6.2 mm beneath the liver capsule) colorectal liver metastases were identified and resected using NIR fluorescence imaging. Median tumor-to-liver ratio was 7.0 (range, 1.9-18.7) and no significant differences between time points or doses were found. Indocyanine green fluorescence was seen as a rim around the tumor, which is shown to be entrapment around cytokeratin 7-positive hepatocytes compressed by the tumor. Importantly, in 5 of 40 patients (12.5%, 95% confidence interval = 5.0-26.6), additional small and superficially located lesions were detected using NIR fluorescence, and were otherwise undetectable by preoperative computed tomography, intraoperative ultrasound, visual inspection, and palpation. CONCLUSIONS: NIR fluorescence imaging, even when used with a nontargeted, clinically available NIR fluorophore, is complementary to conventional imaging and able to identify missed lesions by other modalities.


Asunto(s)
Neoplasias Colorrectales/patología , Neoplasias Colorrectales/cirugía , Neoplasias Hepáticas/secundario , Neoplasias Hepáticas/cirugía , Cirugía Asistida por Computador/métodos , Anciano , Femenino , Colorantes Fluorescentes , Humanos , Verde de Indocianina , Masculino , Microscopía Fluorescente , Persona de Mediana Edad , Pronóstico , Análisis de Supervivencia
20.
Mol Pharm ; 10(10): 3882-91, 2013 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-23968358

RESUMEN

The ability to assess in near-real time the tumor cell killing efficacy of chemotherapy regimens would improve patient treatment and survival. An ineffective regimen could be abandoned early in favor of a more effective treatment. We sought to noninvasively image treatment-related tumor cell death in mice using an optically labeled synthetic heat shock protein-90 (Hsp90) alkylator, 4-(N-(S-glutathionylacetyl)amino)phenylarsonous acid (GSAO). The Hsp90 chaperone is an important element in oncogene addiction and tumor cell survival, and its expression is enhanced by chemotherapy. These factors were predicted to favor the detection of tumor cell death using GSAO. GSAO specifically labeled apoptotic and necrotic tumor cells in culture and cells of comparable morphology in subcutaneous human pancreatic carcinoma tumors in mice. A near-infrared fluorescent conjugate of GSAO was used to noninvasively image cyclophosphamide-induced tumor cell death in murine orthotopic human mammary tumors. The GSAO conjugate did not accumulate in healthy organs or tissues in the mouse, and unbound compound was excreted rapidly via the kidneys. There was a significant increase in the GSAO fluorescence signal in the treated tumors measured either in vivo or ex vivo, and the fluorescence signal colocalized with apoptotic cells in sectioned tumors. The favorable biodistribution of optically labeled GSAO, the nature of its tumor cell target, and its capacity to noninvasively detect tumor cell death should facilitate the application of this compound in studies of the efficacy of existing and new chemotherapeutics.


Asunto(s)
Proteínas HSP90 de Choque Térmico/metabolismo , Animales , Antineoplásicos Alquilantes/farmacología , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Ciclofosfamida/farmacología , Ciclofosfamida/uso terapéutico , Femenino , Neoplasias Mamarias Animales/tratamiento farmacológico , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA