RESUMEN
Mental health disorders and neurodegenerative diseases place a heavy burden on patients and societies, and, although great strides have been made to understand the pathophysiology of these conditions, advancement in drug development is lagging. The importance of gastrointestinal health in maintaining overall health and preventing disease is not a new concept. Hundreds of years ago, healers from various cultures and civilizations recognized the crucial role of the gut in sustaining health. More than a century ago, scientists began exploring the restorative effects of probiotics, marking the early recognition of the importance of gut microbes. The omics era brought more enlightenment and enabled researchers to identify the complexity of the microbial ecosystems we harbour, encompassing bacteria, eukaryotes (including fungi), archaea, viruses, and other microorganisms. The extensive genetic capacity of the microbiota is dynamic and influenced by the environment. The microbiota therefore serves as a significant entity within us, with evolutionarily preserved functions in host metabolism, immunity, development, and behavior. The significant role of the bacterial gut microbiome in mental health and neurodegenerative disorders has been realized and described within the framework of the microbiota-gut-brain axis. However, the bacterial members do not function unaccompanied, but rather in concert, and there is a substantial knowledge gap regarding the involvement of non-bacterial microbiome members in these disorders. In this review, we will explore the current literature that implicates a role for the entire metagenomic ensemble, and how their complex interkingdom relationships could influence CNS functioning in mental health disorders and neurodegenerative diseases.
RESUMEN
There is urgent need for novel antidepressant treatments that confer therapeutic benefits via engagement with identified mechanistic targets. The objective of the study was to determine whether activation of the classical anti-inflammatory interleukin-6 signaling pathways is associated with the antidepressant effects of whole-body hyperthermia. A 6-week, randomized, double-blind study compared whole-body hyperthermia with a sham condition in a university-based medical center. Medically healthy participants aged 18-65 years who met criteria for major depressive disorder, were free of psychotropic medication use, and had a baseline 17-item Hamilton Depression Rating Scale score ≥ 16 were randomized with 1-to-1 allocation in blocks of 6 to receive whole-body hyperthermia or sham. Of 338 individuals screened, 34 were randomized, 30 received interventions and 26 had ≥ 2 blood draws and depressive symptom assessments. Secondary data analysis examined change in the ratio of IL-6:soluble IL-6 receptor pre-intervention, post-intervention, and at weeks 1 and 4. Hierarchical linear modeling tested whether increased IL-6:soluble IL-6 receptor ratio post-intervention was associated with decreased depressive symptom at weeks 1, 2, 4 and 6 for those randomized to whole-body hyperthermia. Twenty-six individuals were randomized to whole-body hyperthermia [n = 12; 75 % female; age = 37.9 years (SD = 15.3) or sham [n = 14; 57.1 % female; age = 41.1 years (SD = 12.5). When compared to the sham condition, active whole-body hyperthermia only increased the IL-6:soluble IL-6 receptor ratio post-treatment [F(3,72) = 11.73,p < .001], but not pre-intervention or at weeks 1 and 4. Using hierarchical linear modeling, increased IL-6:sIL-6R ratio following whole-body hyperthermia moderated depressive symptoms at weeks 1, 2, 4 and 6, such that increases in the IL-6:soluble IL-6 receptor ratio were associated with decreased depressive symptoms at weeks 1, 2, 4 and 6 for those receiving the active whole-body hyperthermia compared to sham treatment (B = -229.44, t = -3.82,p < .001). Acute activation of classical intereukin-6 signaling might emerge as a heretofore unrecognized novel mechanism that could be harnessed to expand the antidepressant armamentarium.
Asunto(s)
Trastorno Depresivo Mayor , Interleucina-6 , Receptores de Interleucina-6 , Transducción de Señal , Humanos , Femenino , Masculino , Interleucina-6/sangre , Adulto , Método Doble Ciego , Persona de Mediana Edad , Transducción de Señal/efectos de los fármacos , Trastorno Depresivo Mayor/terapia , Receptores de Interleucina-6/metabolismo , Hipertermia Inducida/métodos , Adulto Joven , Adolescente , Resultado del Tratamiento , Anciano , Hipertermia , Antidepresivos/uso terapéutico , Antidepresivos/farmacologíaRESUMEN
OBJECTIVE: To examine the feasibility of an integrated mind-body MDD treatment combining cognitive behavioral therapy (CBT) and whole-body hyperthermia (WBH). METHODS: In this single-arm trial, 16 adults with MDD initially received 8 weekly CBT sessions and 8 weekly WBH sessions. Outcomes included WBH sessions completed (primary), self-report depression assessments completed (secondary), and pre-post intervention changes in depression symptoms (secondary). We also explored changes in mood and cognitive processes and assessed changes in mood as predictors of overall treatment response. RESULTS: Thirteen participants (81.3%) completed ≥ 4 WBH sessions (primary outcome); midway through the trial, we reduced from 8 weekly to 4 bi-weekly WBH sessions to increase feasibility. The n = 12 participants who attended the final assessment visit completed 100% of administered self-report depression assessments; all enrolled participants (n = 16) completed 89% of these assessments. Among the n = 12 who attended the final assessment visit, the average pre-post-intervention BDI-II reduction was 15.8 points (95% CI: -22.0, -9.70), p = 0.0001, with 11 no longer meeting MDD criteria (secondary outcomes). Pre-post intervention improvements in negative automatic thinking, but not cognitive flexibility, achieved statistical significance. Improved mood from pre-post the initial WBH session predicted pre-post treatment BDI-II change (36.2%; rho = 0.60, p = 0.038); mood changes pre-post the first CBT session did not. LIMITATIONS: Small sample size and single-arm design limit generalizability. CONCLUSION: An integrated mind-body intervention comprising weekly CBT sessions and bi-weekly WBH sessions was feasible. Results warrant future larger controlled clinical trials.Clinivaltrials.gov Registration: NCT05708976.
Asunto(s)
Terapia Cognitivo-Conductual , Hipertermia Inducida , Humanos , Femenino , Masculino , Terapia Cognitivo-Conductual/métodos , Adulto , Persona de Mediana Edad , Hipertermia Inducida/métodos , Depresión/terapia , Estudios de Factibilidad , Terapias Mente-Cuerpo/métodosRESUMEN
Recent microbiome research has incorporated a higher number of samples through more participants in a study, longitudinal studies, and metanalysis between studies. Physical limitations in a sequencing machine can result in samples spread across sequencing runs. Here we present the results of sequencing nearly 1000 16S rRNA gene sequences in fecal (stabilized and swab) and oral (swab) samples from multiple human microbiome studies and positive controls that were conducted with identical standard operating procedures. Sequencing was performed in the same center across 18 different runs. The simplified mock community showed limitations in accuracy, while precision (e.g., technical variation) was robust for the mock community and actual human positive control samples. Technical variation was the lowest for stabilized fecal samples, followed by fecal swab samples, and then oral swab samples. The order of technical variation stability was inverse of DNA concentrations (e.g., highest in stabilized fecal samples), highlighting the importance of DNA concentration in reproducibility and urging caution when analyzing low biomass samples. Coefficients of variation at the genus level also followed the same trend for lower variation with higher DNA concentrations. Technical variation across both sample types and the two human sampling locations was significantly less than the observed biological variation. Overall, this research providing comparisons between technical and biological variation, highlights the importance of using positive controls, and provides semi-quantified data to better understand variation introduced by sequencing runs. KEY POINTS: ⢠Mock community and positive control accuracy were lower than precision. ⢠Samples with lower DNA concentration had increased technical variation across sequencing runs. ⢠Biological variation was significantly higher than technical variation due to sequencing runs.
Asunto(s)
ADN Bacteriano , Heces , Microbiota , ARN Ribosómico 16S , Análisis de Secuencia de ADN , Humanos , ARN Ribosómico 16S/genética , Heces/microbiología , Microbiota/genética , Análisis de Secuencia de ADN/métodos , ADN Bacteriano/genética , Bacterias/genética , Bacterias/clasificación , Bacterias/aislamiento & purificación , Reproducibilidad de los Resultados , Boca/microbiología , Secuenciación de Nucleótidos de Alto Rendimiento/métodosRESUMEN
Obesity, associated with the intake of a high-fat diet (HFD), and anxiety are common among those living in modern urban societies. Recent studies suggest a role of microbiome-gut-brain axis signaling, including a role for brain serotonergic systems in the relationship between HFD and anxiety. Evidence suggests the gut microbiome and the serotonergic brain system together may play an important role in this response. Here we conducted a nine-week HFD protocol in male rats, followed by an analysis of the gut microbiome diversity and community composition, brainstem serotonergic gene expression (tph2, htr1a, and slc6a4), and anxiety-related defensive behavioral responses. We show that HFD intake decreased alpha diversity and altered the community composition of the gut microbiome in association with obesity, increased brainstem tph2, htr1a and slc6a4 mRNA expression, including in the caudal part of the dorsomedial dorsal raphe nucleus (cDRD), a subregion previously associated with stress- and anxiety-related behavioral responses, and, finally, increased anxiety-related defensive behavioral responses. The HFD increased the Firmicutes/Bacteroidetes ratio relative to control diet, as well as higher relative abundances of Blautia, and decreases in Prevotella. We found that tph2, htr1a and slc6a4 mRNA expression were increased in subregions of the dorsal raphe nucleus in the HFD, relative to control diet. Specific bacterial taxa were associated with increased serotonergic gene expression in the cDRD. Thus, we propose that HFD-induced obesity is associated with altered microbiome-gut-serotonergic brain axis signaling, leading to increased anxiety-related defensive behavioral responses in rats.
Asunto(s)
Ansiedad , Eje Cerebro-Intestino , Dieta Alta en Grasa , Microbioma Gastrointestinal , Animales , Masculino , Dieta Alta en Grasa/efectos adversos , Microbioma Gastrointestinal/fisiología , Ansiedad/microbiología , Eje Cerebro-Intestino/fisiología , Ratas , Ratas Sprague-Dawley , Obesidad/microbiología , Obesidad/psicología , Obesidad/metabolismo , Transducción de Señal/fisiología , Conducta Animal/fisiologíaRESUMEN
Stress-related somatic and psychiatric disorders are often associated with a decline in regulatory T cell (Treg) counts and chronic low-grade inflammation. Recent preclinical evidence suggests that the latter is at least partly mediated by stress-induced upregulation of toll-like receptor (TLR)2 in newly generated neutrophils and polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs), as well as glucocorticoid (GC) resistance in predominantly PMN-MDSCs following stress-induced upregulation of TLR4 expression. Here we show in mice exposed to the chronic subordinate colony housing (CSC) paradigm that repeated intragastric (i.g.) administrations of a heat-killed preparation of Mycobacterium vaccae NCTC 11659, a saprophytic microorganism with immunoregulatory properties, protected against the stress-induced reduction in systemic Tregs, increase in basal and LPS-induced in vitro splenocyte viability, as well as splenic in vitro GC resistance. Our findings further support the hypothesis that i.g. M. vaccae protects against CSC-associated splenic GC resistance via directly affecting the myeloid compartment, thereby preventing the CSC-induced upregulation of TLR4 in newly generated PMN-MDSCs. In contrast, the protective effects of i.g. M. vaccae on the CSC-induced upregulation of TLR2 in neutrophils and the subsequent increase in basal and LPS-induced in vitro splenocyte viability seems to be indirectly mediated via the Treg compartment. These data highlight the potential for use of oral administration of M. vaccae NCTC 11659 to prevent stress-induced exaggeration of inflammation, a risk factor for development of stress-related psychiatric disorders.
Asunto(s)
Glucocorticoides , Mycobacterium , Ratones , Animales , Glucocorticoides/farmacología , Lipopolisacáridos , Receptor Toll-Like 4 , InflamaciónRESUMEN
Stress-related psychiatric disorders including anxiety disorders, mood disorders, and trauma and stressor-related disorders, such as posttraumatic stress disorder (PTSD), affect millions of people world-wide each year. Individuals with stress-related psychiatric disorders have been found to have poor immunoregulation, increased proinflammatory markers, and dysregulation of fear memory. The "Old Friends" hypothesis proposes that a lack of immunoregulatory inputs has led to a higher prevalence of inflammatory disorders and stress-related psychiatric disorders, in which inappropriate inflammation is thought to be a risk factor. Immunization with a soil-derived saprophytic bacterium with anti-inflammatory and immunoregulatory properties, Mycobacterium vaccae NCTC 11659, can lower proinflammatory biomarkers, increase stress resilience, and, when given prior to or after fear conditioning in a rat model of fear-potentiated startle, enhance fear extinction. In this study, we investigated whether immunization with heat-killed M. vaccae NCTC 11659 would enhance fear extinction in contextual or auditory-cued fear conditioning paradigms and whether M. vaccae NCTC 11659 would prevent stress-induced exaggeration of fear expression or stress-induced resistance to extinction learning. Adult male Sprague Dawley rats were immunized with M. vaccae NCTC 11659 (subcutaneous injections once a week for three weeks), and underwent either: Experiment 1) one-trial contextual fear conditioning; Experiment 2) two-trial contextual fear conditioning; Experiment 3) stress-induced enhancement of contextual fear conditioning; Experiment 4) stress-induced enhancement of auditory-cued fear conditioning; or Experiment 5) stress-induced enhancement of auditory-cued fear conditioning exploring short-term memory. Immunizations with M. vaccae NCTC 11659 had no effect on one- or two-trial contextual fear conditioning or contextual fear extinction, with or without exposure to inescapable stress. However, inescapable stress increased resistance to auditory-cued fear extinction. Immunization with M. vaccae NCTC 11659 prevented the stress-induced increase in resistance to auditory-cued fear extinction learning. Finally, in an auditory-cued fear conditioning paradigm exploring short-term memory and fear acquisition, immunization with M. vaccae did not prevent fear acquisition, either with or without exposure to inescapable stress, consistent with the hypothesis that M. vaccae NCTC 11659 has no effect on fear acquisition but enhances fear extinction. These data are consistent with the hypothesis that increased immunoregulation following immunization with M. vaccae NCTC 11659 promotes stress resilience, in particular by preventing stress-induced resistance to fear extinction, and may be a potential therapeutic intervention for trauma- and stressor-related disorders such as PTSD.
Asunto(s)
Extinción Psicológica , Calor , Masculino , Ratas , Animales , Ratas Sprague-Dawley , MiedoRESUMEN
Inflammatory conditions, including allergic asthma and conditions in which chronic low-grade inflammation is a risk factor, such as stress-related psychiatric disorders, are prevalent and are a significant cause of disability worldwide. Novel approaches for the prevention and treatment of these disorders are needed. One approach is the use of immunoregulatory microorganisms, such as Mycobacterium vaccae NCTC 11659, which have anti-inflammatory, immunoregulatory, and stress-resilience properties. However, little is known about how M. vaccae NCTC 11659 affects specific immune cell targets, including monocytes, which can traffic to peripheral organs and the central nervous system and differentiate into monocyte-derived macrophages that, in turn, can drive inflammation and neuroinflammation. In this study, we investigated the effects of M. vaccae NCTC 11659 and subsequent lipopolysaccharide (LPS) challenge on gene expression in human monocyte-derived macrophages. THP-1 monocytes were differentiated into macrophages, exposed to M. vaccae NCTC 11659 (0, 10, 30, 100, 300 µg/mL), then, 24 h later, challenged with LPS (0, 0.5, 2.5, 250 ng/mL), and assessed for gene expression 24 h following challenge with LPS. Exposure to M. vaccae NCTC 11659 prior to challenge with higher concentrations of LPS (250 ng/mL) polarized human monocyte-derived macrophages with decreased IL12A, IL12B, and IL23A expression relative to IL10 and TGFB1 mRNA expression. These data identify human monocyte-derived macrophages as a direct target of M. vaccae NCTC 11659 and support the development of M. vaccae NCTC 11659 as a potential intervention to prevent stress-induced inflammation and neuroinflammation implicated in the etiology and pathophysiology of inflammatory conditions and stress-related psychiatric disorders.
Asunto(s)
Lipopolisacáridos , Mycobacterium , Humanos , Lipopolisacáridos/farmacología , Enfermedades Neuroinflamatorias , Inflamación , MacrófagosRESUMEN
Previous studies have shown that the in vivo administration of soil-derived bacteria with anti-inflammatory and immunoregulatory properties, such as Mycobacterium vaccae NCTC 11659, can prevent a stress-induced shift toward an inflammatory M1 microglial immunophenotype and microglial priming in the central nervous system (CNS). It remains unclear whether M. vaccae NCTC 11659 can act directly on microglia to mediate these effects. This study was designed to determine the effects of M. vaccae NCTC 11659 on the polarization of naïve BV-2 cells, a murine microglial cell line, and BV-2 cells subsequently challenged with lipopolysaccharide (LPS). Briefly, murine BV-2 cells were exposed to 100 µg/mL whole-cell, heat-killed M. vaccae NCTC 11659 or sterile borate-buffered saline (BBS) vehicle, followed, 24 h later, by exposure to 0.250 µg/mL LPS (Escherichia coli 0111: B4; n = 3) in cell culture media vehicle (CMV) or a CMV control condition. Twenty-four hours after the LPS or CMV challenge, cells were harvested to isolate total RNA. An analysis using the NanoString platform revealed that, by itself, M. vaccae NCTC 11659 had an "adjuvant-like" effect, while exposure to LPS increased the expression of mRNAs encoding proinflammatory cytokines, chemokine ligands, the C3 component of complement, and components of inflammasome signaling such as Nlrp3. Among LPS-challenged cells, M. vaccae NCTC 11659 had limited effects on differential gene expression using a threshold of 1.5-fold change. A subset of genes was assessed using real-time reverse transcription polymerase chain reaction (real-time RT-PCR), including Arg1, Ccl2, Il1b, Il6, Nlrp3, and Tnf. Based on the analysis using real-time RT-PCR, M. vaccae NCTC 11659 by itself again induced "adjuvant-like" effects, increasing the expression of Il1b, Il6, and Tnf while decreasing the expression of Arg1. LPS by itself increased the expression of Ccl2, Il1b, Il6, Nlrp3, and Tnf while decreasing the expression of Arg1. Among LPS-challenged cells, M. vaccae NCTC 11659 enhanced LPS-induced increases in the expression of Nlrp3 and Tnf, consistent with microglial priming. In contrast, among LPS-challenged cells, although M. vaccae NCTC 11659 did not fully prevent the effects of LPS relative to vehicle-treated control conditions, it increased Arg1 mRNA expression, suggesting that M. vaccae NCTC 11659 induces an atypical microglial phenotype. Thus, M. vaccae NCTC 11659 acutely (within 48 h) induced immune-activating and microglial-priming effects when applied directly to murine BV-2 microglial cells, in contrast to its long-term anti-inflammatory and immunoregulatory effects observed on the CNS when whole-cell, heat-killed preparations of M. vaccae NCTC 11659 were given peripherally in vivo.
Asunto(s)
Infecciones por Citomegalovirus , Microglía , Mycobacteriaceae , Animales , Ratones , Lipopolisacáridos/farmacología , Proteína con Dominio Pirina 3 de la Familia NLR , Interleucina-6 , Adyuvantes Inmunológicos , Adyuvantes Farmacéuticos , AntiinflamatoriosRESUMEN
In the conventional model of serotonin neurotransmission, serotonin released by neurons in the midbrain raphe nuclei exerts its actions on forebrain neurons by interacting with a large family of post-synaptic receptors. The actions of serotonin are terminated by active transport of serotonin back into the releasing neuron, which is mediated by the serotonin reuptake transporter (SERT). Because SERT is expressed pre-synaptically and is widely thought to be the only serotonin transporter in the forebrain, the conventional model does not include serotonin transport into post-synaptic neurons. However, a large body of evidence accumulating since the 1970s has shown that serotonin, despite having a positive charge, can cross cell membranes through a diffusion-like process. Multiple low-affinity, high-capacity, sodium-independent transporters, widely expressed in the brain, allow the carrier-mediated diffusion of serotonin into forebrain neurons. The amount of serotonin crossing cell membranes through this mechanism under physiological conditions is considerable. Most prominent textbooks fail to include this alternative method of serotonin uptake in the brain, and even most neuroscientists are unaware of it. This failure has limited our understanding of a key regulator of serotonergic neurotransmission, impeded research on the potential intracellular actions of serotonin in post-synaptic neurons and glial cells, and may have impeded our understanding of the mechanism by which antidepressant medications reduce depressive symptoms.
Asunto(s)
Proteínas de Transporte de Serotonina en la Membrana Plasmática , Serotonina , Serotonina/metabolismo , Proteínas de Transporte de Serotonina en la Membrana Plasmática/metabolismo , Neuronas , Membrana Celular/metabolismo , Encéfalo/metabolismoRESUMEN
Chronic disruption of rhythms (CDR) impacts sleep and can result in circadian misalignment of physiological systems which, in turn, is associated with increased disease risk. Exposure to repeated or severe stressors also disturbs sleep and diurnal rhythms. Prebiotic nutrients produce favorable changes in gut microbial ecology, the gut metabolome, and reduce several negative impacts of acute severe stressor exposure, including disturbed sleep, core body temperature rhythmicity, and gut microbial dysbiosis. In light of previous compelling evidence that prebiotic diet broadly reduces negative impacts of acute, severe stressors, we hypothesize that prebiotic diet will also effectively mitigate the negative impacts of chronic disruption of circadian rhythms on physiology and sleep/wake behavior. Male, Sprague Dawley rats were fed diets enriched in prebiotic substrates or calorically matched control chow. After 5 weeks on diet, rats were exposed to CDR (12 h light/dark reversal, weekly for 8 weeks) or remained on undisturbed normal light/dark cycles (NLD). Sleep EEG, core body temperature, and locomotor activity were recorded via biotelemetry in freely moving rats. Fecal samples were collected on experimental days -33, 0 (day of onset of CDR), and 42. Taxonomic identification and relative abundances of gut microbes were measured in fecal samples using 16S rRNA gene sequencing and shotgun metagenomics. Fecal primary, bacterially modified secondary, and conjugated bile acids were measured using liquid chromatography with tandem mass spectrometry (LC-MS/MS). Prebiotic diet produced rapid and stable increases in the relative abundances of Parabacteroides distasonis and Ruminiclostridium 5. Shotgun metagenomics analyses confirmed reliable increases in relative abundances of Parabacteroides distasonis and Clostridium leptum, a member of the Ruminiclostridium genus. Prebiotic diet also modified fecal bile acid profiles; and based on correlational and step-wise regression analyses, Parabacteroides distasonis and Ruminiclostridium 5 were positively associated with each other and negatively associated with secondary and conjugated bile acids. Prebiotic diet, but not CDR, impacted beta diversity. Measures of alpha diversity evenness were decreased by CDR and prebiotic diet prevented that effect. Rats exposed to CDR while eating prebiotic, compared to control diet, more quickly realigned NREM sleep and core body temperature (ClockLab) diurnal rhythms to the altered light/dark cycle. Finally, both cholic acid and Ruminiclostridium 5 prior to CDR were associated with time to realign CBT rhythms to the new light/dark cycle after CDR; whereas both Ruminiclostridium 5 and taurocholic acid prior to CDR were associated with NREM sleep recovery after CDR. These results support our hypothesis and suggest that ingestion of prebiotic substrates is an effective strategy to increase the relative abundance of health promoting microbes, alter the fecal bile acid profile, and facilitate the recovery and realignment of sleep and diurnal rhythms after circadian disruption.
Asunto(s)
Ácidos y Sales Biliares , Prebióticos , Animales , Bacteroidetes , Cromatografía Liquida , Ritmo Circadiano , Dieta , Masculino , ARN Ribosómico 16S/genética , Ratas , Ratas Sprague-Dawley , Sueño , Espectrometría de Masas en TándemRESUMEN
Stress-related disorders, such as posttraumatic stress disorder (PTSD), are highly prevalent and often difficult to treat. In rodents, stress-related, anxiety-like defensive behavioral responses may be characterized by social avoidance, exacerbated inflammation, and altered metabolic states. We have previously shown that, in rodents, subcutaneous injections of a heat-killed preparation of the soil-derived bacterium Mycobacterium vaccae NCTC 11659 promotes stress resilience effects that are associated with immunoregulatory signaling in the periphery and the brain. In the current study, we sought to determine whether treatment with a heat-killed preparation of the closely related M. vaccae type strain, M. vaccae ATCC 15483, would also promote stress-resilience in adult male rats, likely due to biologically similar characteristics of the two strains. Here we show that immunization with either M. vaccae NCTC 11659 or M. vaccae ATCC 15483 prevents stress-induced increases in hippocampal interleukin 6 mRNA expression, consistent with previous studies showing that M. vaccae NCTC 11659 prevents stress-induced increases in peripheral IL-6 secretion, and prevents exaggeration of anxiety-like defensive behavioral responses assessed 24 h after exposure to inescapable tail shock stress (IS) in adult male rats. Analysis of mRNA expression, protein abundance, and flow cytometry data demonstrate overlapping but also unique effects of treatment with the two M. vaccae strains on immunological and metabolic signaling in the host. These data support the hypothesis that treatment with different M. vaccae strains may immunize the host against stress-induced dysregulation of physiology and behavior.
Asunto(s)
Mycobacteriaceae , Mycobacterium , Animales , Ansiedad , Lípidos , Masculino , RatasRESUMEN
We conducted whole-genome sequencing of four inbred mouse strains initially selected for high (H1, H2) or low (L1, L2) open-field activity (OFA), and then examined strain distribution patterns for all DNA variants that differed between their BALB/cJ and C57BL/6J parental strains. Next, we assessed genome-wide sharing (3,678,826 variants) both between and within the High and Low Activity strains. Results suggested that about 10% of these DNA variants may be associated with OFA, and clearly demonstrated its polygenic nature. Finally, we conducted bioinformatic analyses of functional genomics data from mouse, rat, and human to refine previously identified quantitative trait loci (QTL) for anxiety-related measures. This combination of sequence analysis and genomic-data integration facilitated refinement of previously intractable QTL findings, and identified possible genes for functional follow-up studies.
Asunto(s)
Ansiedad/genética , Ratones Endogámicos/genética , Prueba de Campo Abierto/fisiología , Animales , Trastornos de Ansiedad/genética , Mapeo Cromosómico/métodos , Biología Computacional/métodos , Modelos Animales de Enfermedad , Genómica/métodos , Genotipo , Humanos , Ratones , Ratones Endogámicos BALB C/genética , Ratones Endogámicos C57BL/genética , Fenotipo , Polimorfismo de Nucleótido Simple/genética , Sitios de Carácter Cuantitativo/genética , Ratas , Secuenciación del Exoma/métodosRESUMEN
PURPOSE OF REVIEW: We present biological and psychological factors implicated in psychiatric manifestations of SARS-CoV-2, as well as its neuroinvasive capability and immune pathophysiology. RECENT FINDINGS: Preexisting mental illness leads to worse clinical outcomes in COVID-19. The presence of the virus was reported in the cerebrospinal fluid (CSF) and brain tissue post-mortem. Most common psychiatric manifestations include delirium, mood disorders, anxiety disorders, and posttraumatic stress disorder. "Long-COVID" non-syndromal presentations include "brain-fogginess," autonomic instability, fatigue, and insomnia. SARS-CoV-2 infection can trigger prior vulnerabilities based on the priming of microglia and other cells, induced or perpetuated by aging and mental and physical illnesses. COVID-19 could further induce priming of neuroimmunological substrates leading to exacerbated immune response and autoimmunity targeting structures in the central nervous system (CNS), in response to minor immune activating environmental exposures, including stress, minor infections, allergens, pollutants, and traumatic brain injury.
Asunto(s)
COVID-19 , Trastornos por Estrés Postraumático , Encéfalo , Sistema Nervioso Central , Humanos , SARS-CoV-2RESUMEN
Corticosteroid hormones exert powerful influences on neuronal physiology and behavior by activating intracellular glucocorticoid receptors (GR) and mineralocorticoid receptors (MR), which act as ligand-gated transcription factors, altering gene expression. In addition to these genomic effects on physiology and behavior, which are usually delayed by minutes to hours, corticosteroid hormones also initiate rapid effects through diverse nongenomic mechanisms. One such mechanism involves the direct inhibition by corticosteroid hormones of monoamine transport mediated by the "uptake2" transporter, organic cation transporter 3 (OCT3), a high-capacity, low-affinity transporter for norepinephrine, epinephrine, dopamine, serotonin, and histamine. In this review we describe studies that demonstrate OCT3 expression and corticosterone-sensitive monoamine transport in the brain and present evidence supporting the hypothesis that corticosterone exerts rapid, nongenomic actions on glia and neurons, ultimately modulating physiology and behavior, by inhibiting OCT3-mediated monoamine clearance. We also describe the corticosteroid sensitivity of the other members of the uptake2 family and examine their potential contributions to nongenomic effects of corticosteroids in the brain.
Asunto(s)
Glucocorticoides , Proteínas de Transporte de Catión Orgánico , Cationes , Corticosterona , Glucocorticoides/farmacología , Humanos , NeuronasRESUMEN
Anthropogenic noise is a pervasive pollutant that decreases environmental quality by disrupting a suite of behaviors vital to perception and communication. However, even within populations of noise-sensitive species, individuals still select breeding sites located within areas exposed to high noise levels, with largely unknown physiological and fitness consequences. We use a study system in the natural gas fields of northern New Mexico to test the prediction that exposure to noise causes glucocorticoid-signaling dysfunction and decreases fitness in a community of secondary cavity-nesting birds. In accordance with these predictions, and across all species, we find strong support for noise exposure decreasing baseline corticosterone in adults and nestlings and, conversely, increasing acute stressor-induced corticosterone in nestlings. We also document fitness consequences with increased noise in the form of reduced hatching success in the western bluebird (Sialia mexicana), the species most likely to nest in noisiest environments. Nestlings of all three species exhibited accelerated growth of both feathers and body size at intermediate noise amplitudes compared with lower or higher amplitudes. Our results are consistent with recent experimental laboratory studies and show that noise functions as a chronic, inescapable stressor. Anthropogenic noise likely impairs environmental risk perception by species relying on acoustic cues and ultimately leads to impacts on fitness. Our work, when taken together with recent efforts to document noise across the landscape, implies potential widespread, noise-induced chronic stress coupled with reduced fitness for many species reliant on acoustic cues.
Asunto(s)
Corticosterona/sangre , Aptitud Genética , Comportamiento de Nidificación , Ruido/efectos adversos , Pájaros Cantores/sangre , Animales , Tamaño Corporal , Plumas/crecimiento & desarrollo , FemeninoRESUMEN
Urbanization is on the rise, and environments offering a narrow range of microbial exposures are linked to an increased prevalence of both physical and mental disorders. Human and animal studies suggest that an overreactive immune system not only accompanies stress-associated disorders but might even be causally involved in their pathogenesis. Here, we show in young [mean age, years (SD): rural, 25.1 (0.78); urban, 24.5 (0.88)] healthy human volunteers that urban upbringing in the absence of pets (n = 20), relative to rural upbringing in the presence of farm animals (n = 20), was associated with a more pronounced increase in the number of peripheral blood mononuclear cells (PBMCs) and plasma interleukin 6 (IL-6) concentrations following acute psychosocial stress induced by the Trier social stress test (TSST). Moreover, ex vivo-cultured PBMCs from urban participants raised in the absence of animals secreted more IL-6 in response to the T cell-specific mitogen Con A. In turn, antiinflammatory IL-10 secretion was suppressed following TSST in urban participants raised in the absence of animals, suggesting immunoregulatory deficits, relative to rural participants raised in the presence of animals. Questionnaires, plasma cortisol, and salivary α-amylase, however, indicated the experimental protocol was more stressful and anxiogenic for rural participants raised in the presence of animals. Together, our findings support the hypothesis that urban vs. rural upbringing in the absence or presence of animals, respectively, increases vulnerability to stress-associated physical and mental disorders by compromising adequate resolution of systemic immune activation following social stress and, in turn, aggravating stress-associated systemic immune activation.
Asunto(s)
Citocinas/sangre , Inmunidad Celular/inmunología , Leucocitos Mononucleares/inmunología , Mascotas , Población Rural/estadística & datos numéricos , Estrés Psicológico/fisiopatología , Población Urbana/estadística & datos numéricos , Adulto , Animales , Humanos , Hidrocortisona/sangre , Sistema Hipotálamo-Hipofisario/metabolismo , Leucocitos Mononucleares/metabolismo , Masculino , Sistema Hipófiso-Suprarrenal/metabolismo , Adulto JovenRESUMEN
Inflammatory diseases and stressor-related psychiatric disorders, for which inflammation is a risk factor, are increasing in modern Western societies. Recent studies suggest that immunoregulatory approaches are a promising tool in reducing the risk of suffering from such disorders. Specifically, the environmental saprophyte Mycobacterium vaccae National Collection of Type Cultures (NCTC) 11659 has recently gained attention for the prevention and treatment of stress-related psychiatric disorders. However, effective use requires a sophisticated understanding of the effects of M. vaccae NCTC 11659 and related rapidly growing mycobacteria (RGMs) on microbiome-gut-immune-brain interactions. This historical narrative review is intended as a first step in exploring these mechanisms and provides an overview of preclinical and clinical studies on M. vaccae NCTC 11659 and related RGMs. The overall objective of this review article is to increase the comprehension of, and interest in, the mechanisms through which M. vaccae NCTC 11659 and related RGMs promote stress resilience, with the intention of fostering novel clinical strategies for the prevention and treatment of stressor-related disorders.
Asunto(s)
Agentes Inmunomoduladores , Inflamación/prevención & control , Mycobacteriaceae , Estrés Psicológico/complicaciones , Animales , Humanos , Inflamación/etiologíaRESUMEN
OBJECTIVE : Psychiatric hospitalizations and emergency department (ED) visits are costly, stigmatizing, and often ineffective. Given the immune and kynurenine activation in bipolar disorder (BD) and schizophrenia, as well as the immune-modulatory effects of statins, we aimed to compare the relative risk (RRs) of psychiatric hospitalizations and ED visits between individuals prescribed lipophilic vs. hydrophilic statins vs. no statins. We hypothesized (a) reduced rates of hospitalization and ER utilization with statins versus no statins and (b) differences in outcomes between statins, as lipophilia increases the capability to penetrate the blood-brain barrier with potentially beneficial neuroimmune, antioxidant, neuroprotective, neurotrophic, and endothelial stabilizing effects, and, in contrast, potentially detrimental decreases in brain cholesterol concentrations leading to serotoninergic dysfunction, changes in membrane lipid composition, thus affecting ion channels and receptors. METHODS : We used VA service utilization data from October 1, 2010 to September 30, 2015. The RRs for psychiatric hospitalization and ED visits, were estimated using robust Poisson regression analyses. The number of individuals analyzed was 683,129. RESULTS : Individuals with schizophrenia and BD who received prescriptions for either lipophilic or hydrophilic statins had a lower RR of psychiatric hospitalization or ED visits relative to nonstatin controls. Hydrophilic statins were significantly associated with lower RRs of psychiatric hospitalization but not of ED visits, compared to lipophilic statins. CONCLUSION : The reduction in psychiatric hospitalizations in statin users (vs. nonusers) should be interpreted cautiously, as it carries a high risk of confounding by indication. While the lower RR of psychiatric hospitalizations in hydrophilic statins relative to the lipophilic statins is relatively bias free, the finding bears replication in a specifically designed study. If replicated, important clinical implications for personalizing statin treatment in patients with mental illness, investigating add-on statins for improved therapeutic control, and mechanistic exploration for identifying new treatment targets are natural next steps.
RESUMEN
Depression affects at least 322 million people globally, or approximately 4.4% of the world's population. While the earnestness of researchers and clinicians to understand and treat depression is not waning, the number of individuals suffering from depression continues to increase over and above the rate of global population growth. There is a sincere need for a paradigm shift. Research in the past decade is beginning to take a more holistic approach to understanding depression etiology and treatment, integrating multiple body systems into whole-body conceptualizations of this mental health affliction. Evidence supports the hypothesis that the gut microbiome, or the collective trillions of microbes inhabiting the gastrointestinal tract, is an important factor determining both the risk of development of depression and persistence of depressive symptoms. This review discusses recent advances in both rodent and human research that explore bidirectional communication between the gut microbiome and the immune, endocrine, and central nervous systems implicated in the etiology and pathophysiology of depression. Through interactions with circulating inflammatory markers and hormones, afferent and efferent neural systems, and other, more niche, pathways, the gut microbiome can affect behavior to facilitate the development of depression, exacerbate current symptoms, or contribute to treatment and resilience. While the challenge of depression may be the direst mental health crisis of our age, new discoveries in the gut microbiome, when integrated into a holistic perspective, hold great promise for the future of positive mental health.