Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
NMR Biomed ; : e5148, 2024 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-38556903

RESUMEN

Intravoxel incoherent motion (IVIM) MRI has emerged as a valuable technique for the assessment of tissue characteristics and perfusion. However, there is limited knowledge about the relationship between IVIM-derived measures and changes at the level of the vascular network. In this study, we investigated the potential use of IVIM MRI as a noninvasive tool for measuring changes in cerebral vascular density. Variations in quantitative immunohistochemical measurements of the vascular density across different regions in the rat brain (cortex, corpus callosum, hippocampus, thalamus, and hypothalamus) were related to the pseudo-diffusion coefficient D* and the flowing blood fraction f in healthy Wistar rats. We assessed whether region-wise differences in the vascular density are reflected by variations in the IVIM measurements and found a significant positive relationship with the pseudo-diffusion coefficient (p < 0.05, ß = 0.24). The effect of cerebrovascular alterations, such as blood-brain barrier (BBB) disruption on the perfusion-related IVIM parameters, is not well understood. Therefore, we investigated the effect of BBB disruption on the IVIM measures in a rat model of metabolic and vascular comorbidities (ZSF1 obese rat) and assessed whether this affects the relationship between the cerebral vascular density and the noninvasive IVIM measurements. We observed increased vascular permeability without detecting any differences in diffusivity, suggesting that BBB leakage is present before changes in the tissue integrity. We observed no significant difference in the relationship between cerebral vascular density and the IVIM measurements in our model of comorbidities compared with healthy normotensive rats.

2.
Arterioscler Thromb Vasc Biol ; 43(2): 267-285, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36453281

RESUMEN

BACKGROUND: Infective endocarditis (IE) is characterized by an infected thrombus at the heart valves. How bacteria bypass the immune system and cause these thrombi remains unclear. Neutrophils releasing NETs (neutrophil extracellular traps) lie at this interface between host defense and coagulation. We aimed to determine the role of NETs in IE immunothrombosis. METHODS: We used a murine model of Staphylococcus aureus endocarditis in which IE is provoked on inflamed heart valves and characterized IE thrombus content by immunostaining identifying NETs. Antibody-mediated neutrophil depletion and neutrophil-selective PAD4 (peptidylarginine deiminase 4)-knockout mice were used to clarify the role of neutrophils and NETs, respectively. S. aureus mutants deficient in key virulence factors related to immunothrombosis (nucleases or staphylocoagulases) were investigated. RESULTS: Neutrophils releasing NETs were present in infected thrombi and within cellular infiltrates in the surrounding vasculature. Neutrophil depletion increased occurrence of IE, whereas neutrophil-selective impairment of NET formation did not alter IE occurrence. Absence of S. aureus nuclease, which degrades NETs, did not affect endocarditis outcome. In contrast, absence of staphylocoagulases (coagulase and von Willebrand factor binding protein) led to improved survival, decreased bacteremia, smaller infiltrates, and decreased tissue destruction. Significantly more NETs were present in these vegetations, which correlated with decreased bacteria and cell death in the adjacent vascular wall. CONCLUSIONS: Neutrophils protect against IE independent of NET release. Absence of S. aureus coagulases, but not nucleases, reduced IE severity and increased NET levels. Staphylocoagulase-induced fibrin likely hampers NETs from constraining infection and the resultant tissue damage, a hallmark of valve destruction in IE.


Asunto(s)
Endocarditis Bacteriana , Endocarditis , Trampas Extracelulares , Infecciones Estafilocócicas , Ratones , Animales , Neutrófilos/metabolismo , Trampas Extracelulares/metabolismo , Staphylococcus aureus , Tromboinflamación , Endocarditis Bacteriana/prevención & control , Endocarditis Bacteriana/metabolismo , Endocarditis/metabolismo
3.
Eur Heart J ; 40(39): 3248-3259, 2019 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-30945735

RESUMEN

AIMS: The pathogenesis of endocarditis is not well understood resulting in unsuccessful attempts at prevention. Clinical observations suggest that Staphylococcus aureus infects either damaged or inflamed heart valves. Using a newly developed endocarditis mouse model, we therefore studied the initial adhesion of S. aureus in both risk states. METHODS AND RESULTS: Using 3D confocal microscopy, we examined the adhesion of fluorescent S. aureus to murine aortic valves. To mimic different risk states we either damaged the valves with a surgically placed catheter or simulated valve inflammation by local endothelium activation. We used von Willebrand factor (VWF) gene-deficient mice, induced platelet and fibrinogen depletion and used several S. aureus mutant strains to investigate the contribution of both host and bacterial factors in early bacterial adhesion. Both cardiac valve damage and inflammation predisposed to endocarditis, but by distinct mechanisms. Following valve damage, S. aureus adhered directly to VWF and fibrin, deposited on the damaged valve. This was mediated by Sortase A-dependent adhesins such as VWF-binding protein and Clumping factor A. Platelets did not contribute. In contrast, upon cardiac valve inflammation, widespread endothelial activation led to endothelial cell-bound VWF release. This recruited large amounts of platelets, capturing S. aureus to the valve surface. Here, neither fibrinogen, nor Sortase A were essential. CONCLUSION: Cardiac valve damage and inflammation predispose to S. aureus endocarditis via distinct mechanisms. These findings may have important implications for the development of new preventive strategies, as some interventions might be effective in one risk state, but not in the other.


Asunto(s)
Válvula Aórtica/microbiología , Adhesión Bacteriana , Endocarditis Bacteriana/microbiología , Inflamación/complicaciones , Infecciones Estafilocócicas/complicaciones , Staphylococcus aureus/fisiología , Animales , Válvula Aórtica/lesiones , Plaquetas , Coagulasa/metabolismo , Modelos Animales de Enfermedad , Endocarditis Bacteriana/metabolismo , Endotelio/metabolismo , Femenino , Fibrina/metabolismo , Inflamación/metabolismo , Masculino , Ratones , Glicoproteínas de Membrana Plaquetaria/metabolismo , Infecciones Estafilocócicas/metabolismo , Staphylococcus aureus/metabolismo , Factor de von Willebrand/genética , Factor de von Willebrand/metabolismo
4.
J Infect Dis ; 213(7): 1148-56, 2016 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-26743845

RESUMEN

BACKGROUND: Staphylococcus lugdunensis is an emerging cause of endocarditis. To cause endovascular infections, S. lugdunensis requires mechanisms to overcome shear stress. We investigated whether platelets and von Willebrand factor (VWF) mediate bacterial adhesion to the vessel wall and the cardiac valves under flow. METHODS: S. lugdunensis binding to VWF, collagen, and endothelial cells was studied in a parallel flow chamber in the absence and presence of platelets. In vivo adhesion of S. lugdunensis was evaluated in a mouse microvasculature perfusion model and a new mouse model of endocarditis. RESULTS: Contrary to other coagulase-negative staphylococci, S. lugdunensis bound to VWF under flow, thus enabling its adhesion to endothelial cells and to the subendothelial matrix. In inflamed vessels of the mesenteric circulation, VWF recruited S. lugdunensis to the vessel wall. In a novel endocarditis mouse model, local inflammation and the resulting release of VWF enabled S. lugdunensis to bind and colonize the heart valves. CONCLUSIONS: S. lugdunensis binds directly to VWF, which proved to be vital for withstanding shear forces and for its adhesion to the vessel wall and cardiac valves. This mechanism explains why S. lugdunensis causes more-aggressive infections, including endocarditis, compared with other coagulase-negative staphylococci.


Asunto(s)
Adhesión Bacteriana/fisiología , Endocarditis Bacteriana/microbiología , Válvulas Cardíacas/microbiología , Infecciones Estafilocócicas/microbiología , Staphylococcus lugdunensis/fisiología , Factor de von Willebrand/metabolismo , Animales , Regulación de la Expresión Génica , Humanos , Ligandos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Unión Proteica , Resistencia al Corte , Factor de von Willebrand/genética
5.
JACC Basic Transl Sci ; 8(11): 1439-1453, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38093743

RESUMEN

In addition to its potent antiplatelet activity, ticagrelor possesses antibacterial properties against gram-positive bacteria. We wondered whether the typical clinical dosage of ticagrelor could prevent the development of infective endocarditis caused by highly virulent Staphylococcus aureus. Ticagrelor prevented vegetation formation in a mouse model of inflammation-induced endocarditis. The dosage achieved in patients under ticagrelor therapy altered bacterial toxin production and adherence on activated endothelial cells, thereby mitigating bacterial virulence. Besides the previously described bactericidal activity at high doses, ticagrelor at typical clinical doses possesses antivirulence activity against S aureus. Ticagrelor antiplatelet activity further interferes with the interplay between platelets and bacteria.

6.
J Am Heart Assoc ; 11(20): e027593, 2022 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-36205249

RESUMEN

Background Arteriovenous fistulae (AVFs) are the gold standard for vascular access in those requiring hemodialysis but may put an extra hemodynamic stress on the cardiovascular system. The complex interactions between the heart, kidney, and AVFs remain incompletely understood. Methods and Results We characterized a novel rat model of five-sixths partial nephrectomy (NX) and AVFs. NX induced increases in urea, creatinine, and hippuric acid. The addition of an AVF (AVF+NX) further increased urea and a number of uremic toxins such as trimethylamine N-oxide and led to increases in cardiac index, left and right ventricular volumes, and right ventricular mass. Plasma levels of uremic toxins correlated well with ventricular morphology and function. Heart transcriptomes identified altered expression of 8 genes following NX and 894 genes following AVF+NX, whereas 290 and 1431 genes were altered in the kidney transcriptomes, respectively. Gene ontology and Kyoto Encyclopedia of Genes and Genomes analysis revealed gene expression changes related to cell division and immune activation in both organs, suppression of ribosomes and transcriptional activity in the heart, and altered renin-angiotensin signaling as well as chronodisruption in the kidney. All except the latter were worsened in AVF+NX compared with NX. Conclusions Inflammation and organ dysfunction in chronic kidney disease are exacerbated following AVF creation. Furthermore, our study provides important information for the discovery of novel biomarkers and therapeutic targets in the management of cardiorenal syndrome.


Asunto(s)
Fístula Arteriovenosa , Derivación Arteriovenosa Quirúrgica , Fallo Renal Crónico , Insuficiencia Renal Crónica , Ratas , Animales , Transcriptoma , Creatinina , Renina , Diálisis Renal/métodos , Insuficiencia Renal Crónica/complicaciones , Insuficiencia Renal Crónica/genética , Biomarcadores , Angiotensinas , Urea , Fallo Renal Crónico/terapia
7.
Mol Ther Methods Clin Dev ; 25: 215-224, 2022 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-35313504

RESUMEN

New platforms are needed for the design of novel prophylactic vaccines and advanced immune therapies. Live-attenuated yellow fever vaccine YF17D serves as a vector for several licensed vaccines and platform for novel candidates. On the basis of YF17D, we developed an exceptionally potent COVID-19 vaccine candidate called YF-S0. However, use of such live RNA viruses raises safety concerns, such as adverse events linked to original YF17D (yellow fever vaccine-associated neurotropic disease [YEL-AND] and yellow fever vaccine-associated viscerotropic disease [YEL-AVD]). In this study, we investigated the biodistribution and shedding of YF-S0 in hamsters. Likewise, we introduced hamsters deficient in signal transducer and activator of transcription 2 (STAT2) signaling as a new preclinical model of YEL-AND/AVD. Compared with YF17D, YF-S0 showed improved safety with limited dissemination to brain and visceral tissues, absent or low viremia, and no shedding of infectious virus. Considering that yellow fever virus is transmitted by Aedes mosquitoes, any inadvertent exposure to the live recombinant vector via mosquito bites is to be excluded. The transmission risk of YF-S0 was hence compared with readily transmitting YF-Asibi strain and non-transmitting YF17D vaccine, with no evidence for productive infection of mosquitoes. The overall favorable safety profile of YF-S0 is expected to translate to other vaccines based on the same YF17D platform.

8.
Front Cardiovasc Med ; 9: 964512, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36324747

RESUMEN

Recovered COVID-19 patients often display cardiac dysfunction, even after a mild infection. Most current histological results come from patients that are hospitalized and therefore represent more severe outcomes than most COVID-19 patients face. To overcome this limitation, we investigated the cardiac effects of SARS-CoV-2 infection in a hamster model. SARS-CoV-2 infected hamsters developed diastolic dysfunction after recovering from COVID-19. Histologically, increased cardiomyocyte size was present at the peak of viral load and remained at all time points investigated. As this increase is too rapid for hypertrophic remodeling, we found instead that the heart was oedemic. Moreover, cardiomyocyte swelling is associated with the presence of ischemia. Fibrin-rich microthrombi and pericyte loss were observed at the peak of viral load, resulting in increased HIF1α in cardiomyocytes. Surprisingly, SARS-CoV-2 infection inhibited the translocation of HIF1α to the nucleus both in hamster hearts, in cultured cardiomyocytes, as well as in an epithelial cell line. We propose that the observed diastolic dysfunction is the consequence of cardiac oedema, downstream of microvascular cardiac ischemia. Additionally, our data suggest that inhibition of HIF1α translocation could contribute to an exaggerated response upon SARS-CoV-2 infection.

9.
Cardiovasc Res ; 118(5): 1262-1275, 2022 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-33909875

RESUMEN

AIMS: Hepatic capillaries are lined with specialized liver sinusoidal endothelial cells (LSECs) which support macromolecule passage to hepatocytes and prevent fibrosis by keeping hepatic stellate cells (HSCs) quiescent. LSEC specialization is co-determined by transcription factors. The zinc-finger E-box-binding homeobox (Zeb)2 transcription factor is enriched in LSECs. Here, we aimed to elucidate the endothelium-specific role of Zeb2 during maintenance of the liver and in liver fibrosis. METHODS AND RESULTS: To study the role of Zeb2 in liver endothelium we generated EC-specific Zeb2 knock-out (ECKO) mice. Sequencing of liver EC RNA revealed that deficiency of Zeb2 results in prominent expression changes in angiogenesis-related genes. Accordingly, the vascular area was expanded and the presence of pillars inside ECKO liver vessels indicated that this was likely due to increased intussusceptive angiogenesis. LSEC marker expression was not profoundly affected and fenestrations were preserved upon Zeb2 deficiency. However, an increase in continuous EC markers suggested that Zeb2-deficient LSECs are more prone to dedifferentiation, a process called 'capillarization'. Changes in the endothelial expression of ligands that may be involved in HSC quiescence together with significant changes in the expression profile of HSCs showed that Zeb2 regulates LSEC-HSC communication and HSC activation. Accordingly, upon exposure to the hepatotoxin carbon tetrachloride (CCl4), livers of ECKO mice showed increased capillarization, HSC activation, and fibrosis compared to livers from wild-type littermates. The vascular maintenance and anti-fibrotic role of endothelial Zeb2 was confirmed in mice with EC-specific overexpression of Zeb2, as the latter resulted in reduced vascularity and attenuated CCl4-induced liver fibrosis. CONCLUSION: Endothelial Zeb2 preserves liver angioarchitecture and protects against liver fibrosis. Zeb2 and Zeb2-dependent genes in liver ECs may be exploited to design novel therapeutic strategies to attenuate hepatic fibrosis.


Asunto(s)
Células Endoteliales , Cirrosis Hepática , Animales , Biomarcadores/metabolismo , Células Endoteliales/metabolismo , Endotelio , Células Estrelladas Hepáticas/metabolismo , Células Estrelladas Hepáticas/patología , Hígado/metabolismo , Cirrosis Hepática/inducido químicamente , Cirrosis Hepática/genética , Cirrosis Hepática/prevención & control , Ratones
10.
Biomolecules ; 10(3)2020 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-32210087

RESUMEN

Vascular development is an orchestrated process of vessel formation from pre-existing vessels via sprouting and intussusceptive angiogenesis as well as vascular remodeling to generate the mature vasculature. Bone morphogenetic protein (BMP) signaling via intracellular SMAD1 and SMAD5 effectors regulates sprouting angiogenesis in the early mouse embryo, but its role in other processes of vascular development and in other vascular beds remains incompletely understood. Here, we investigate the function of SMAD1/5 during early postnatal retinal vascular development using inducible, endothelium-specific deletion of Smad1 and Smad5. We observe the formation of arterial-venous malformations in areas with high blood flow, and fewer and less functional tip cells at the angiogenic front. The vascular plexus region is remarkably hyperdense and this is associated with reduced vessel regression and aberrant vascular loop formation. Taken together, our results highlight important functions of SMAD1/5 during vessel formation and remodeling in the early postnatal retina.


Asunto(s)
Proteínas Morfogenéticas Óseas/metabolismo , Embrión de Mamíferos , Neovascularización Fisiológica , Retina/embriología , Vasos Retinianos/embriología , Transducción de Señal , Proteína Smad1/metabolismo , Proteína Smad5/metabolismo , Animales , Proteínas Morfogenéticas Óseas/genética , Embrión de Mamíferos/irrigación sanguínea , Embrión de Mamíferos/embriología , Ratones , Ratones Transgénicos , Proteína Smad1/genética , Proteína Smad5/genética
11.
J Thromb Haemost ; 18(3): 722-731, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31758651

RESUMEN

BACKGROUND: Previous clinical evidence correlates levels of von Willebrand factor (VWF) and its cleaving protease ADAMTS13 with outcome in septic patients. No previous studies addressed if VWF and ADAMTS13 affected the outcome of Staphylococcus aureus sepsis. OBJECTIVES: We studied the role of VWF and ADAMTS13 in S. aureus sepsis both in patients and in mice. METHODS: VWF levels and ADAMTS13 activity levels were measured in plasma samples from 89 S. aureus bacteremia patients by chemiluminescent assays and were correlated with clinical sepsis outcome parameters. In wild-type mice and mice deficient in VWF and ADAMTS13, we investigated the outcome of S. aureus sepsis and quantified bacterial clearance and organ microthrombi. RESULTS: In patients with S. aureus bloodstream infections, high VWF levels and low ADAMTS13 activity levels correlated with disease severity and with parameters of inflammation and disseminated intravascular coagulation. In septic mice, VWF deficiency attenuated mortality, whereas ADAMTS13 deficiency increased mortality. Bacterial clearance was enhanced in VWF-deficient mice. The differences in mortality for the studied genotypes were associated with differential loads of organ microthrombi in both liver and kidneys. CONCLUSIONS: In conclusion, this study reports the consistent relation of VWF, ADAMTS13 and their ratio to disease severity in patients and mice with S. aureus sepsis. Targeting VWF multimers and/or the relative ADAMTS13 deficiency that occurs in sepsis should be explored as a potential new therapeutic target in S. aureus endovascular infections.


Asunto(s)
Proteína ADAMTS13 , Bacteriemia/mortalidad , Sepsis/mortalidad , Infecciones Estafilocócicas/mortalidad , Factor de von Willebrand , Proteína ADAMTS13/genética , Animales , Humanos , Ratones , Staphylococcus aureus
12.
Adipocyte ; 8(1): 105-113, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-30860940

RESUMEN

Obesity has become a global health-threat for every age group. It is well known that young mice (10-12 weeks of age) fed a western-type diet (WD) become obese and develop higher cholesterol levels and liver steatosis whereas insulin sensitivity is reduced. Less is known, however, about the effect of a WD on advanced-age mice. Therefore, 10 week-old (young) and 22 month-old (advanced-age), male C57BL/6JRj mice were kept on either a WD or a control diet (SFD) for 15 weeks. In contrast to young mice, advanced-age mice on WD did not show a higher body weight or adipose tissue (AT)-masses, suggesting a protection against diet-induced obesity. Furthermore, plasma adiponectin and leptin levels were not affected upon WD-feeding. A WD, however, did induce more hepatic lipid accumulation as well as increased hepatic expression of the macrophage marker F4/80, in advanced-age mice. There were no significant differences in mRNA levels of uncoupling protein-1 or F4/80 in brown AT (BAT) or of several intestinal integrity markers in colon suggesting that the protection against obesity is not due to excessive BAT or to impaired intestinal absorption of fat. Thus, advanced-age mice, in contrast to their younger counterparts, appeared to be protected against diet-induced obesity.


Asunto(s)
Factores de Edad , Dieta Occidental/efectos adversos , Obesidad/metabolismo , Tejido Adiposo/metabolismo , Tejido Adiposo Pardo/metabolismo , Animales , Hígado Graso , Glucosa/metabolismo , Resistencia a la Insulina/fisiología , Leptina/metabolismo , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Proteína Desacopladora 1/metabolismo
13.
Sci Rep ; 9(1): 17598, 2019 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-31772203

RESUMEN

Implementation of in vivo high-resolution micro-computed tomography (µCT), a powerful tool for longitudinal analysis of murine lung disease models, is hampered by the lack of data on cumulative low-dose radiation effects on the investigated disease models. We aimed to measure radiation doses and effects of repeated µCT scans, to establish cumulative radiation levels and scan protocols without relevant toxicity. Lung metastasis, inflammation and fibrosis models and healthy mice were weekly scanned over one-month with µCT using high-resolution respiratory-gated 4D and expiration-weighted 3D protocols, comparing 5-times weekly scanned animals with controls. Radiation dose was measured by ionization chamber, optical fiberradioluminescence probe and thermoluminescent detectors in a mouse phantom. Dose effects were evaluated by in vivo µCT and bioluminescence imaging read-outs, gold standard endpoint evaluation and blood cell counts. Weekly exposure to 4D µCT, dose of 540-699 mGy/scan, did not alter lung metastatic load nor affected healthy mice. We found a disease-independent decrease in circulating blood platelets and lymphocytes after repeated 4D µCT. This effect was eliminated by optimizing a 3D protocol, reducing dose to 180-233 mGy/scan while maintaining equally high-quality images. We established µCT safety limits and protocols for weekly repeated whole-body acquisitions with proven safety for the overall health status, lung, disease process and host responses under investigation, including the radiosensitive blood cell compartment.


Asunto(s)
Microtomografía por Rayos X/métodos , Animales , Bleomicina/efectos adversos , Células Sanguíneas/efectos de la radiación , Carcinoma de Células Escamosas/diagnóstico por imagen , Carcinoma de Células Escamosas/secundario , Línea Celular Tumoral , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Femenino , Mediciones Luminiscentes , Neoplasias Pulmonares/diagnóstico por imagen , Neoplasias Pulmonares/secundario , Ratones , Ratones Endogámicos DBA , Fantasmas de Imagen , Fibrosis Pulmonar/inducido químicamente , Fibrosis Pulmonar/diagnóstico por imagen , Dosis de Radiación , Traumatismos Experimentales por Radiación/etiología , Traumatismos Experimentales por Radiación/prevención & control , Tolerancia a Radiación , Radiometría , Microtomografía por Rayos X/efectos adversos
14.
Quant Imaging Med Surg ; 8(8): 754-769, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30306056

RESUMEN

BACKGROUND: An experimental imaging platform for longitudinal monitoring and evaluation of cardiac morphology-function changes has been long desired. We sought to establish such a platform by using a rabbit model of reperfused myocardial infarction (MI) that develops chronic left ventricle systolic dysfunction (LVSD) within 7 weeks. METHODS: Fifty-five New Zeeland white (NZW) rabbits received sham-operated or 60-min left circumflex coronary artery (LCx) ligation followed by reperfusion. Cardiac magnetic resonance imaging (cMRI), transthoracic echocardiography (echo), and blood samples were collected at baseline, in acute (48 hours or 1 week) and chronic (7 weeks) stage subsequent to MI for in vivo assessment of infarct size, cardiac morphology, LV function, and myocardial enzymes. Seven weeks post MI, animals were sacrificed and heart tissues were processed for histopathological staining. RESULTS: The success rate of surgical operation was 87.27%. The animal mortality rates were 12.7% and 3.6% both in acute and chronic stage separately. Serum levels of the myocardial enzyme cardiac Troponin T (cTnT) were significantly increased in MI rabbits as compared with sham animals after 4 hours of operation (P<0.05). According to cardiac morphology and function changes, 4 groups could be distinguished: sham rabbits (n=12), and MI rabbits with no (MI_NO_LVSD; n=10), moderate (MI_M_LVSD; n=9) and severe (MI_S_LVSD; n=15) LVSD. No significant differences in cardiac function or wall thickening between sham and MI_NO_LVSD rabbits were observed at both stages using both cMRI and echo methods. cMRI data showed that MI_M_LVSD rabbits exhibited a reduction of ejection fraction (EF) and an increase in end-systolic volume (ESV) at the acute phase, while at the chronic stage these parameters did not change further. Moreover, in MI_S_LVSD animals, these observations were more striking at the acute stage followed by a further decline in EF and increase in ESV at the chronic stage. Lateral wall thickening determined by cMRI was significantly decreased in MI_M_LVSD versus MI_NO_LVSD animals at both stages (P<0.05). As for MI_S_LVSD versus MI_M_LVSD rabbits, the thickening of anterior, inferior and lateral walls was significantly more decreased at both stages (P<0.05). Echo confirmed the findings of cMRI. Furthermore, these in vivo outcomes including those from vivid cine cMRI could be supported by exactly matched ex vivo histomorphological evidences. CONCLUSIONS: Our findings indicate that chronic LVSD developed over time after surgery-induced MI in rabbits can be longitudinally evaluated using non-invasive imaging techniques and confirmed by the entire-heart-slice histomorphology. This experimental LVSD platform in rabbits may interest researchers in the field of experimental cardiology and help strengthen drug development and translational research for the management of cardiovascular diseases.

15.
Eur J Pharmacol ; 832: 145-155, 2018 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-29782862

RESUMEN

Patients with heart disease have a higher risk to develop cardiac arrhythmias, either spontaneously or drug-induced. In this study, we have used a rabbit model of myocardial infarction (MI) with severe left ventricular systolic dysfunction (LVSD) to study potential drug-induced cardiac risks with N-(piperidin-2-ylmethyl)-2,5-bis(2,2,2-trifluoroethoxy)benzamide (flecainide). Upon ligation of the left circumflex arteries, male New Zealand White rabbits developed a large MI and moderate or severe LVSD 7 weeks after surgery, in comparison to SHAM-operated animals. Subsequently, animals were exposed to escalating doses of flecainide (0.25-4 mg/kg) or solvent. Electrocardiograms (ECG) were recorded before surgery, 1 and 7 weeks after surgery and continuously during the drug protocol. The ECG biomarker iCEB (index of Cardio-Electrophysiological Balance = QT/QRS ratio) was calculated. During the ECG recording at week 1 and week 7 post MI, rabbits had no spontaneous cardiac arrhythmias. When rabbits were exposed to escalating doses of flecainide, 2 out of 5 rabbits with MI and moderate LVSD versus 0 out of 5 solvent-treated rabbits developed arrhythmias, such as ventricular tachycardia/ventricular fibrillation. These were preceded by a marked decrease of iCEB just before the onset (from 4.09 to 2.42 and from 5.56 to 2.25, respectively). Furthermore, 1 out of 5 MI rabbits with moderate LVSD and 1 out of 7 MI rabbits with severe LVSD developed total atrioventricular block after flecainide infusion and died. This rabbit model of MI and severe LVSD may be useful for preclinical evaluation of drug (similar mechanism as flecainide)-induced arrhythmic risks, which might be predicted by iCEB.


Asunto(s)
Arritmias Cardíacas/fisiopatología , Sístole , Disfunción Ventricular Izquierda/fisiopatología , Animales , Arritmias Cardíacas/inducido químicamente , Arritmias Cardíacas/diagnóstico por imagen , Modelos Animales de Enfermedad , Electrocardiografía , Flecainida/farmacología , Imagen por Resonancia Magnética , Masculino , Conejos , Riesgo , Sístole/efectos de los fármacos
16.
Thromb Res ; 146: 76-83, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27614188

RESUMEN

BACKGROUND: Platelet Endothelial Aggregation Receptor-1 (PEAR1) is a transmembrane platelet receptor that amplifies the activation of the platelet fibrinogen receptor (αIIbß3) during platelet aggregation. In man, Pear1 polymorphisms are associated with changes in platelet aggregability. In this report, we characterized Pear1 expression and function in murine platelets. METHODS: Pear1 phosphorylation and signaling, platelet aggregation, α-degranulation and clot retraction were studied in WT and Pear1-/- platelets. The function of Pear1 in haemostasis and thrombosis was studied in a mouse tail vein bleeding and ferric chloride-induced mesenteric thrombosis model. RESULTS: Mature murine platelets express Pear1 on their membrane and clustering of Pear1 by anti-Pear1 antibodies triggered platelet aggregation. Pear1 was weakly phosphorylated during collagen-induced murine platelet aggregation and was translocated to the cytoskeleton. Absence of murine Pear1 impaired dextran sulfate-induced platelet aggregation, but did not impact collagen-, AYPGK and ADP-induced platelet aggregation, coupled to a lower Pear1 expression in murine than in human platelets and to weaker Pear1-mediated downstream signaling. Neither clot retraction nor α-degranulation was affected in Pear1-/- mice. Likewise, in vivo tests like the tail vein bleeding time and thrombus formation in mesenteric veins were similar in WT and Pear1-/- mice. CONCLUSION: Murine platelet Pear1 shares a number of characteristics with human platelet PEAR1. Nevertheless, murine Pear1 contributes less to platelet function as does human PEAR1 and does not overtly impact haemostasis and thrombosis in mice.


Asunto(s)
Plaquetas/metabolismo , Receptores de Superficie Celular/metabolismo , Trombosis/metabolismo , Animales , Humanos , Ratones
17.
Circulation ; 106(9): 1140-6, 2002 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-12196342

RESUMEN

BACKGROUND: Hypercholesterolemia induces functional and structural changes of the microvasculature and reduces coronary flow reserve in humans and experimental animals. The effect of hypercholesterolemia on left ventricular (LV) function in the absence of coronary stenosis is, however, unknown. Our objective was therefore to assess the effect of hypercholesterolemia and cholesterol withdrawal on LV function in the presence of advanced coronary plaques that do not cause stenosis. METHODS AND RESULTS: Twenty-eight minipigs on cholesterol diet for 34 weeks and 16 control pigs were studied. Seven hypercholesterolemic pigs were withdrawn from the diet for 26 weeks. LV function was assessed with cine-MRI, myocardial blood flow with colored microspheres, and capillary density with immunohistochemistry, and microvascular endothelial cell apoptosis with terminal dUTP nick-end labeling staining. Hypercholesterolemia (17+/-8 versus 268+/-150 versus 12+/-10 mg/dL LDL cholesterol, control versus hypercholesterolemic versus cholesterol withdrawal; P<0.001) induced atherosclerosis but not stenosis in the left coronary artery. Baseline cardiac output, ejection fraction, and stroke volume were similar in control and hypercholesterolemic pigs. In dobutamine stress test, cardiac output (P<0.05) and stroke volume (P<0.01) were lower in hypercholesterolemic pigs compared with controls. The impaired response to dobutamine was reversible by dietary cholesterol withdrawal. Hypercholesterolemia reduced endomyocardial coronary flow reserve (P<0.01) and capillary density (P<0.05) and induced capillary endothelial cell apoptosis. Hypercholesterolemic pigs failed to reduce vascular resistance in response to increased LV workload and pharmacological vasodilation. CONCLUSION: LDL hypercholesterolemia in minipigs impaired LV response to dobutamine stress in the absence of coronary stenosis.


Asunto(s)
Capilares , Circulación Coronaria , Hipercolesterolemia/fisiopatología , Estrés Fisiológico/fisiopatología , Disfunción Ventricular Izquierda/fisiopatología , Agonistas Adrenérgicos beta , Animales , Apoptosis , Arteriosclerosis/inducido químicamente , Arteriosclerosis/patología , Velocidad del Flujo Sanguíneo , Presión Sanguínea/efectos de los fármacos , Capilares/patología , Recuento de Células , Colesterol en la Dieta , Dobutamina , Endotelio Vascular/patología , Hipercolesterolemia/inducido químicamente , Hipercolesterolemia/complicaciones , Lípidos/sangre , Imagen por Resonancia Cinemagnética , Microesferas , Porcinos Enanos , Resistencia Vascular , Disfunción Ventricular Izquierda/complicaciones , Disfunción Ventricular Izquierda/diagnóstico , Disfunción Ventricular Izquierda/patología
18.
Cardiovasc Res ; 55(3): 633-41, 2002 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-12160961

RESUMEN

OBJECTIVE: Ischemic preconditioning (IP) describes the adaptation of the myocardium to ischemic stress preceded by short periods of ischemia and reperfusion. However, its cardioprotective mechanisms are not completely understood. We assessed the effect of IP on ventricular energetics in an in-vivo sheep model. METHODS: IP was performed in six sheep by three 5 min aortic cross-clamping periods interspersed with 5 min of reperfusion during cardiopulmonary bypass and with six sheep as time-matched controls. Global myocardial ischemia was subsequently achieved by 30 min aortic cross-clamping with left ventricular unloading during normothermic cardiopulmonary bypass. Weaning from cardiopulmonary bypass was performed 40 min after reperfusion. At baseline, after treatment (IP or time-matched cardiopulmonary bypass), and up to 100 min after reperfusion, left ventricular pressure-volume loops were measured using a conductance catheter during a right heart bypass preparation. Contractility, diastolic function, and ventriculo-arterial coupling were evaluated. Ventricular energetics [the relation between myocardial oxygen consumption (MVO(2)) and systolic pressure-volume area (PVA)] was also evaluated. A right heart bypass was instituted to control the preload and to decompress the right ventricle completely, thereby eliminating parallel conductance variation and minimizing the contribution of the right ventricle to MVO(2). RESULTS: IP reduced unloaded MVO(2) (PVA-independent MVO(2)). Contractility, diastolic function, and ventriculo-arterial coupling in the IP group were better preserved than in the control group after ischemia-reperfusion. CONCLUSIONS: IP reduces unloaded MVO(2), and preserves contractility, diastolic function, and ventriculo-arterial coupling after 30 min global myocardial ischemia in an in-vivo sheep model.


Asunto(s)
Precondicionamiento Isquémico Miocárdico/métodos , Infarto del Miocardio/metabolismo , Infarto del Miocardio/prevención & control , Miocardio/metabolismo , Consumo de Oxígeno , Análisis de Varianza , Animales , Puente Cardiopulmonar , Modelos Animales , Daño por Reperfusión Miocárdica/metabolismo , Distribución Aleatoria , Ovinos
19.
Cardiovasc Res ; 55(2): 385-95, 2002 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-12123778

RESUMEN

OBJECTIVE: To assess the effect of hypercholesterolemia on neointima formation and vascular remodelling after porcine coronary angioplasty. METHODS: Left anterior descending coronary angioplasty was carried out in five control and 16 age-matched hypercholesterolemic miniature pigs. Vascular remodelling was measured by intravascular ultrasound. Neointima size and composition were assessed by quantitative image analysis. Coronary smooth muscle cells (SMC) from control and diet pigs were collected 1 h after angioplasty for in vitro study of the effect of hypercholesterolemic serum on SMC migration and of macrophage-induced matrix degradation on SMC adhesion. RESULTS: Twenty-eight days after angioplasty, lumen increase was 0.08+/-1.7 mm(2) in diet and 2.7+/-2.7 mm(2) (P=0.016) in control pigs. Lumen increase correlated with vascular remodelling (IEL(post)/IEL(pre); R(2)=0.59; P<0.001) and with the circumferential gain relative to the neointima (R(2)=0.32; P<0.01) but not with neointimal area that was similar in control and diet pigs. Circumferential gain correlated with VSMC deposition at the site of the injury (R(2)=0.28; P<0.01) that correlated with organized collagen (R(2)=0.34; P<0.01). The VSMC and collagen content of neointima in diet pigs was lower whereas the macrophage content was higher. Hypercholesterolemic serum and oxidised LDL reduced migration of VSMC from diet pigs. Macrophage-induced degradation of VSMC extracellular matrix reduced VSMC adhesion (P=0.015). CONCLUSION: Hypercholesterolemia impairs vascular remodelling of balloon-treated coronary arteries. It decreases VSMC and collagen accumulation at the site of injury. Our in vitro data suggest that this decrease can be due to macrophage-induced matrix degradation and reduced VSMC adhesion and to impaired VSMC migration. Oxidised LDL mimics the inhibitory effect of hypercholesterolemic serum.


Asunto(s)
Angioplastia Coronaria con Balón , Enfermedad de la Arteria Coronaria/terapia , Hipercolesterolemia/patología , Animales , Adhesión Celular , Técnicas de Cultivo de Célula , División Celular , Movimiento Celular , Colágeno , Enfermedad de la Arteria Coronaria/patología , Enfermedad de la Arteria Coronaria/fisiopatología , Vasos Coronarios/patología , Matriz Extracelular/patología , Hipercolesterolemia/fisiopatología , Hiperplasia/sangre , Lípidos/sangre , Macrófagos/fisiología , Músculo Liso Vascular/patología , Porcinos Enanos , Túnica Íntima/patología
20.
J Vis Exp ; (100): e52862, 2015 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-26131651

RESUMEN

In order to cause endovascular infections and infective endocarditis, bacteria need to be able to adhere to the vessel wall while being exposed to the shear stress of flowing blood. To identify the bacterial and host factors that contribute to vascular adhesion of microorganisms, appropriate models that study these interactions under physiological shear conditions are needed. Here, we describe an in vitro flow chamber model that allows to investigate bacterial adhesion to different components of the extracellular matrix or to endothelial cells, and an intravital microscopy model that was developed to directly visualize the initial adhesion of bacteria to the splanchnic circulation in vivo. These methods can be used to identify the bacterial and host factors required for the adhesion of bacteria under flow. We illustrate the relevance of shear stress and the role of von Willebrand factor for the adhesion of Staphylococcus aureus using both the in vitro and in vivo model.


Asunto(s)
Adhesión Bacteriana/fisiología , Técnicas Bacteriológicas/métodos , Vasos Sanguíneos/microbiología , Animales , Técnicas Bacteriológicas/instrumentación , Técnicas In Vitro , Ratones , Microscopía Fluorescente , Staphylococcus aureus/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA