Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Glia ; 72(9): 1693-1706, 2024 09.
Artículo en Inglés | MEDLINE | ID: mdl-38852127

RESUMEN

Astrocytes that reside in superficial (SL) and deep cortical layers have distinct molecular profiles and morphologies, which may underlie specific functions. Here, we demonstrate that the production of SL and deep layer (DL) astrocyte populations from neural progenitor cells in the mouse is temporally regulated. Lineage tracking following in utero and postnatal electroporation with PiggyBac (PB) EGFP and birth dating with EdU and FlashTag, showed that apical progenitors produce astrocytes during late embryogenesis (E16.5) that are biased to the SL, while postnatally labeled (P0) astrocytes are biased to the DL. In contrast, astrocytes born during the predominantly neurogenic window (E14.5) showed a random distribution in the SL and DL. Of interest, E13.5 astrocytes birth dated at E13.5 with EdU showed a lower layer bias, while FT labeling of apical progenitors showed no bias. Finally, examination of the morphologies of "biased" E16.5- and P0-labeled astrocytes demonstrated that E16.5-labeled astrocytes exhibit different morphologies in different layers, while P0-labeled astrocytes do not. Differences based on time of birth are also observed in the molecular profiles of E16.5 versus P0-labeled astrocytes. Altogether, these results suggest that the morphological, molecular, and positional diversity of cortical astrocytes is related to their time of birth from ventricular/subventricular zone progenitors.


Asunto(s)
Astrocitos , Corteza Cerebral , Células-Madre Neurales , Animales , Astrocitos/metabolismo , Astrocitos/citología , Corteza Cerebral/citología , Corteza Cerebral/metabolismo , Células-Madre Neurales/metabolismo , Células-Madre Neurales/citología , Ratones , Ratones Transgénicos , Femenino , Animales Recién Nacidos , Regulación del Desarrollo de la Expresión Génica , Transcriptoma , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Ventrículos Cerebrales/citología , Ratones Endogámicos C57BL
2.
Biomedicines ; 12(3)2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38540276

RESUMEN

Stroke is the leading cause of adult disability worldwide. The majority of stroke survivors are left with devastating functional impairments for which few treatment options exist. Recently, a number of studies have used ectopic expression of transcription factors that direct neuronal cell fate with the intention of converting astrocytes to neurons in various models of brain injury and disease. While there have been reports that question whether astrocyte-to-neuron conversion occurs in vivo, here, we have asked if ectopic expression of the transcription factor Neurod1 is sufficient to promote improved functional outcomes when delivered in the subacute phase following endothelin-1-induced sensory-motor cortex stroke. We used an adeno-associated virus to deliver Neurod1 from the short GFAP promoter and demonstrated improved functional outcomes as early as 28 days post-stroke and persisting to at least 63 days post-stroke. Using Cre-based cell fate tracking, we showed that functional recovery correlated with the expression of neuronal markers in transduced cells by 28 days post-stroke. By 63 days post-stroke, the reporter-expressing cells comprised ~20% of all the neurons in the perilesional cortex and expressed markers of cortical neuron subtypes. Overall, our findings indicate that ectopic expression of Neurod1 in the stroke-injured brain is sufficient to enhance neural repair.

3.
Commun Biol ; 7(1): 845, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38987622

RESUMEN

Adult Neural Stem Cells (aNSCs) in the ventricular-subventricular zone (V-SVZ) are largely quiescent. Here, we characterize the mechanism underlying the functional role of a cell-signalling inhibitory protein, LRIG1, in the control of aNSCs proliferation. Using Lrig1 knockout models, we show that Lrig1 ablation results in increased aNSCs proliferation with no change in neuronal progeny and that this hyperproliferation likely does not result solely from activation of the epidermal growth factor receptor (EGFR). Loss of LRIG1, however, also leads to impaired activation of transforming growth factor beta (TGFß) and bone morphogenic protein (BMP) signalling. Biochemically, we show that LRIG1 binds TGFß/BMP receptors and the TGFß1 ligand. Finally, we show that the consequences of these interactions are to facilitate SMAD phosphorylation. Collectively, these data suggest that unlike in embryonic NSCs where EGFR may be the primary mechanism of action, in aNSCs, LRIG1 and TGFß pathways function together to fulfill their inhibitory roles.


Asunto(s)
Proteínas Morfogenéticas Óseas , Proliferación Celular , Glicoproteínas de Membrana , Células-Madre Neurales , Transducción de Señal , Factor de Crecimiento Transformador beta , Animales , Células-Madre Neurales/metabolismo , Células-Madre Neurales/citología , Factor de Crecimiento Transformador beta/metabolismo , Glicoproteínas de Membrana/metabolismo , Glicoproteínas de Membrana/genética , Ratones , Proteínas Morfogenéticas Óseas/metabolismo , Ratones Noqueados , Células Madre Adultas/metabolismo , Receptores ErbB/metabolismo , Receptores ErbB/genética , Proteínas del Tejido Nervioso
4.
Cell Rep ; 33(2): 108257, 2020 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-33053360

RESUMEN

Here, we ask how neural stem cells (NSCs) transition in the developing neocortex from a rapidly to a slowly proliferating state, a process required to maintain lifelong stem cell pools. We identify LRIG1, known to regulate receptor tyrosine kinase signaling in other cell types, as a negative regulator of cortical NSC proliferation. LRIG1 is expressed in murine cortical NSCs as they start to proliferate more slowly during embryogenesis and then peaks postnatally when they transition to give rise to a portion of adult NSCs. Constitutive or acute loss of Lrig1 in NSCs over this developmental time frame causes stem cell expansion due to increased proliferation. LRIG1 controls NSC proliferation by associating with and negatively regulating the epidermal growth factor receptor (EGFR). These data support a model in which LRIG1 dampens the stem cell response to EGFR ligands within the cortical environment to slow their proliferation as they transition to postnatal adult NSCs.


Asunto(s)
Receptores ErbB/metabolismo , Glicoproteínas de Membrana/metabolismo , Neocórtex/citología , Proteínas del Tejido Nervioso/metabolismo , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Transducción de Señal , Animales , Animales Recién Nacidos , Proliferación Celular , Autorrenovación de las Células , Embrión de Mamíferos/citología , Desarrollo Embrionario , Ratones , Ratones Noqueados , Neurogénesis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA