Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.294
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Cell ; 184(15): 4032-4047.e31, 2021 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-34171309

RESUMEN

Although mutations in DNA are the best-studied source of neoantigens that determine response to immune checkpoint blockade, alterations in RNA splicing within cancer cells could similarly result in neoepitope production. However, the endogenous antigenicity and clinical potential of such splicing-derived epitopes have not been tested. Here, we demonstrate that pharmacologic modulation of splicing via specific drug classes generates bona fide neoantigens and elicits anti-tumor immunity, augmenting checkpoint immunotherapy. Splicing modulation inhibited tumor growth and enhanced checkpoint blockade in a manner dependent on host T cells and peptides presented on tumor MHC class I. Splicing modulation induced stereotyped splicing changes across tumor types, altering the MHC I-bound immunopeptidome to yield splicing-derived neoepitopes that trigger an anti-tumor T cell response in vivo. These data definitively identify splicing modulation as an untapped source of immunogenic peptides and provide a means to enhance response to checkpoint blockade that is readily translatable to the clinic.


Asunto(s)
Neoplasias/genética , Neoplasias/inmunología , Empalme del ARN/genética , Animales , Presentación de Antígeno/efectos de los fármacos , Presentación de Antígeno/inmunología , Antígenos de Neoplasias/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Epítopos/inmunología , Etilenodiaminas/farmacología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Hematopoyesis/efectos de los fármacos , Hematopoyesis/genética , Antígenos de Histocompatibilidad Clase I/metabolismo , Humanos , Inhibidores de Puntos de Control Inmunológico/farmacología , Inmunoterapia , Inflamación/patología , Ratones Endogámicos C57BL , Péptidos/metabolismo , Isoformas de Proteínas/metabolismo , Pirroles/farmacología , Empalme del ARN/efectos de los fármacos , Sulfonamidas/farmacología , Linfocitos T/efectos de los fármacos , Linfocitos T/inmunología
2.
Nature ; 613(7942): 195-202, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36544023

RESUMEN

Inhibition of the tumour suppressive function of p53 (encoded by TP53) is paramount for cancer development in humans. However, p53 remains unmutated in the majority of cases of glioblastoma (GBM)-the most common and deadly adult brain malignancy1,2. Thus, how p53-mediated tumour suppression is countered in TP53 wild-type (TP53WT) GBM is unknown. Here we describe a GBM-specific epigenetic mechanism in which the chromatin regulator bromodomain-containing protein 8 (BRD8) maintains H2AZ occupancy at p53 target loci through the EP400 histone acetyltransferase complex. This mechanism causes a repressive chromatin state that prevents transactivation by p53 and sustains proliferation. Notably, targeting the bromodomain of BRD8 displaces H2AZ, enhances chromatin accessibility and engages p53 transactivation. This in turn enforces cell cycle arrest and tumour suppression in TP53WT GBM. In line with these findings, BRD8 is highly expressed with H2AZ in proliferating single cells of patient-derived GBM, and is inversely correlated with CDKN1A, a canonical p53 target that encodes p21 (refs. 3,4). This work identifies BRD8 as a selective epigenetic vulnerability for a malignancy for which treatment has not improved for decades. Moreover, targeting the bromodomain of BRD8 may be a promising therapeutic strategy for patients with TP53WT GBM.


Asunto(s)
Epigénesis Genética , Glioblastoma , Factores de Transcripción , Proteína p53 Supresora de Tumor , Adulto , Humanos , Puntos de Control del Ciclo Celular , Línea Celular Tumoral , Cromatina/genética , Cromatina/metabolismo , Glioblastoma/genética , Glioblastoma/metabolismo , Glioblastoma/patología , Histonas/metabolismo , Factores de Transcripción/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Proliferación Celular
3.
Mol Cell ; 81(17): 3604-3622.e10, 2021 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-34358447

RESUMEN

The transformed state in acute leukemia requires gene regulatory programs involving transcription factors and chromatin modulators. Here, we uncover an IRF8-MEF2D transcriptional circuit as an acute myeloid leukemia (AML)-biased dependency. We discover and characterize the mechanism by which the chromatin "reader" ZMYND8 directly activates IRF8 in parallel with the MYC proto-oncogene through their lineage-specific enhancers. ZMYND8 is essential for AML proliferation in vitro and in vivo and associates with MYC and IRF8 enhancer elements that we define in cell lines and in patient samples. ZMYND8 occupancy at IRF8 and MYC enhancers requires BRD4, a transcription coactivator also necessary for AML proliferation. We show that ZMYND8 binds to the ET domain of BRD4 via its chromatin reader cassette, which in turn is required for proper chromatin occupancy and maintenance of leukemic growth in vivo. Our results rationalize ZMYND8 as a potential therapeutic target for modulating essential transcriptional programs in AML.


Asunto(s)
Factores Reguladores del Interferón/metabolismo , Leucemia Mieloide Aguda/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Proteínas de Ciclo Celular/metabolismo , Línea Celular , Línea Celular Tumoral , Proliferación Celular/genética , Cromatina/genética , Elementos de Facilitación Genéticos/genética , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Factores Reguladores del Interferón/genética , Leucemia Mieloide Aguda/genética , Proteínas Nucleares/metabolismo , Regiones Promotoras Genéticas/genética , Proto-Oncogenes Mas , Factores de Transcripción/metabolismo , Transcripción Genética/genética , Proteínas Supresoras de Tumor/genética
4.
Mol Cell ; 69(6): 1017-1027.e6, 2018 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-29526696

RESUMEN

The lineage-specific transcription factor (TF) MEF2C is often deregulated in leukemia. However, strategies to target this TF have yet to be identified. Here, we used a domain-focused CRISPR screen to reveal an essential role for LKB1 and its Salt-Inducible Kinase effectors (SIK3, in a partially redundant manner with SIK2) to maintain MEF2C function in acute myeloid leukemia (AML). A key phosphorylation substrate of SIK3 in this context is HDAC4, a repressive cofactor of MEF2C. Consequently, targeting of LKB1 or SIK3 diminishes histone acetylation at MEF2C-bound enhancers and deprives leukemia cells of the output of this essential TF. We also found that MEF2C-dependent leukemias are sensitive to on-target chemical inhibition of SIK activity. This study reveals a chemical strategy to block MEF2C function in AML, highlighting how an oncogenic TF can be disabled by targeting of upstream kinases.


Asunto(s)
Leucemia Mieloide Aguda/enzimología , Proteínas Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Quinasas de la Proteína-Quinasa Activada por el AMP , Acetilación , Animales , Antineoplásicos/farmacología , Proliferación Celular , Elementos de Facilitación Genéticos , Regulación Enzimológica de la Expresión Génica , Regulación Leucémica de la Expresión Génica , Células HEK293 , Células Hep G2 , Histona Desacetilasas/genética , Histona Desacetilasas/metabolismo , Histonas/metabolismo , Humanos , Células K562 , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patología , Factores de Transcripción MEF2/genética , Factores de Transcripción MEF2/metabolismo , Ratones , Células 3T3 NIH , Fosforilación , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Quinasas/genética , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/genética , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Transducción de Señal , Células THP-1 , Células U937
5.
Genes Dev ; 32(13-14): 915-928, 2018 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-29945888

RESUMEN

Small cell lung cancer (SCLC) is widely considered to be a tumor of pulmonary neuroendocrine cells; however, a variant form of this disease has been described that lacks neuroendocrine features. Here, we applied domain-focused CRISPR screening to human cancer cell lines to identify the transcription factor (TF) POU2F3 (POU class 2 homeobox 3; also known as SKN-1a/OCT-11) as a powerful dependency in a subset of SCLC lines. An analysis of human SCLC specimens revealed that POU2F3 is expressed exclusively in variant SCLC tumors that lack expression of neuroendocrine markers and instead express markers of a chemosensory lineage known as tuft cells. Using chromatin- and RNA-profiling experiments, we provide evidence that POU2F3 is a master regulator of tuft cell identity in a variant form of SCLC. Moreover, we show that most SCLC tumors can be classified into one of three lineages based on the expression of POU2F3, ASCL1, or NEUROD1. Our CRISPR screens exposed other unique dependencies in POU2F3-expressing SCLC lines, including the lineage TFs SOX9 and ASCL2 and the receptor tyrosine kinase IGF1R (insulin-like growth factor 1 receptor). These data reveal POU2F3 as a cell identity determinant and a dependency in a tuft cell-like variant of SCLC, which may reflect a previously unrecognized cell of origin or a trans-differentiation event in this disease.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/fisiopatología , Factores de Transcripción de Octámeros/genética , Factores de Transcripción de Octámeros/metabolismo , Carcinoma Pulmonar de Células Pequeñas/genética , Carcinoma Pulmonar de Células Pequeñas/fisiopatología , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Diferenciación Celular , Línea Celular Tumoral , Linaje de la Célula , Humanos , Pulmón/patología , Ratones , Receptor IGF Tipo 1/metabolismo
6.
Circulation ; 149(13): 1004-1015, 2024 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-37886839

RESUMEN

BACKGROUND: The adult mammalian heart is incapable of regeneration, whereas a transient regenerative capacity is maintained in the neonatal heart, primarily through the proliferation of preexisting cardiomyocytes. Neonatal heart regeneration after myocardial injury is accompanied by an expansion of cardiac fibroblasts and compositional changes in the extracellular matrix. Whether and how these changes influence cardiomyocyte proliferation and heart regeneration remains to be investigated. METHODS: We used apical resection and myocardial infarction surgical models in neonatal and adult mice to investigate extracellular matrix components involved in heart regeneration after injury. Single-cell RNA sequencing and liquid chromatography-mass spectrometry analyses were used for versican identification. Cardiac fibroblast-specific Vcan deletion was achieved using the mouse strains Col1a2-2A-CreER and Vcanfl/fl. Molecular signaling pathways related to the effects of versican were assessed through Western blot, immunostaining, and quantitative reverse transcription polymerase chain reaction. Cardiac fibrosis and heart function were evaluated by Masson trichrome staining and echocardiography, respectively. RESULTS: Versican, a cardiac fibroblast-derived extracellular matrix component, was upregulated after neonatal myocardial injury and promoted cardiomyocyte proliferation. Conditional knockout of Vcan in cardiac fibroblasts decreased cardiomyocyte proliferation and impaired neonatal heart regeneration. In adult mice, intramyocardial injection of versican after myocardial infarction enhanced cardiomyocyte proliferation, reduced fibrosis, and improved cardiac function. Furthermore, versican augmented the proliferation of human induced pluripotent stem cell-derived cardiomyocytes. Mechanistically, versican activated integrin ß1 and downstream signaling molecules, including ERK1/2 and Akt, thereby promoting cardiomyocyte proliferation and cardiac repair. CONCLUSIONS: Our study identifies versican as a cardiac fibroblast-derived pro-proliferative proteoglycan and clarifies the role of versican in promoting adult cardiac repair. These findings highlight its potential as a therapeutic factor for ischemic heart diseases.


Asunto(s)
Lesiones Cardíacas , Células Madre Pluripotentes Inducidas , Infarto del Miocardio , Animales , Humanos , Ratones , Animales Recién Nacidos , Proliferación Celular , Corazón , Lesiones Cardíacas/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Mamíferos , Miocitos Cardíacos/metabolismo , Regeneración , Versicanos/genética , Versicanos/metabolismo
7.
Mol Biol Evol ; 41(3)2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38466135

RESUMEN

In the animal kingdom, sexually dimorphic color variation is a widespread phenomenon that significantly influences survival and reproductive success. However, the genetic underpinnings of this variation remain inadequately understood. Our investigation into sexually dimorphic color variation in the desert-dwelling Guinan population of the toad-headed agamid lizard (Phrynocephalus putjatai) utilized a multidisciplinary approach, encompassing phenotypic, ultrastructural, biochemical, genomic analyses, and behavioral experiments. Our findings unveil the association between distinct skin colorations and varying levels of carotenoid and pteridine pigments. The red coloration in males is determined by a genomic region on chromosome 14, housing four pigmentation genes: BCO2 and three 6-pyruvoyltetrahydropterin synthases. A Guinan population-specific nonsynonymous single nucleotide polymorphism in BCO2 is predicted to alter the electrostatic potential within the binding domain of the BCO2-ß-carotene complex, influencing their interaction. Additionally, the gene MAP7 on chromosome 2 emerges as a potential contributor to the blue coloration in subadults and adult females. Sex-specific expression patterns point to steroid hormone-associated genes (SULT2B1 and SRD5A2) as potential upstream regulators influencing sexually dimorphic coloration. Visual modeling and field experiments support the potential selective advantages of vibrant coloration in desert environments. This implies that natural selection, potentially coupled with assortative mating, might have played a role in fixing color alleles, contributing to prevalence in the local desert habitat. This study provides novel insights into the genetic basis of carotenoid and pteridine-based color variation, shedding light on the evolution of sexually dimorphic coloration in animals. Moreover, it advances our understanding of the driving forces behind such intricate coloration patterns.


Asunto(s)
Lagartos , Pigmentación de la Piel , Animales , Femenino , Masculino , Lagartos/genética , Carotenoides/metabolismo , Pteridinas , Reproducción , Pigmentación/genética , Color
8.
EMBO J ; 40(8): e106283, 2021 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-33665835

RESUMEN

Mitochondrial DNA (mtDNA) encodes several key components of respiratory chain complexes that produce cellular energy through oxidative phosphorylation. mtDNA is vulnerable to damage under various physiological stresses, especially oxidative stress. mtDNA damage leads to mitochondrial dysfunction, and dysfunctional mitochondria can be removed by mitophagy, an essential process in cellular homeostasis. However, how damaged mtDNA is selectively cleared from the cell, and how damaged mtDNA triggers mitophagy, remain mostly unknown. Here, we identified a novel mitophagy receptor, ATAD3B, which is specifically expressed in primates. ATAD3B contains a LIR motif that binds to LC3 and promotes oxidative stress-induced mitophagy in a PINK1-independent manner, thus promoting the clearance of damaged mtDNA induced by oxidative stress. Under normal conditions, ATAD3B hetero-oligomerizes with ATAD3A, thus promoting the targeting of the C-terminal region of ATAD3B to the mitochondrial intermembrane space. Oxidative stress-induced mtDNA damage or mtDNA depletion reduces ATAD3B-ATAD3A hetero-oligomerization and leads to exposure of the ATAD3B C-terminus at the mitochondrial outer membrane and subsequent recruitment of LC3 for initiating mitophagy. Furthermore, ATAD3B is little expressed in m.3243A > G mutated cells and MELAS patient fibroblasts showing endogenous oxidative stress, and ATAD3B re-expression promotes the clearance of m.3243A > G mutated mtDNA. Our findings uncover a new pathway to selectively remove damaged mtDNA and reveal that increasing ATAD3B activity is a potential therapeutic approach for mitochondrial diseases.


Asunto(s)
ATPasas Asociadas con Actividades Celulares Diversas/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas Mitocondriales/metabolismo , Mitofagia , Estrés Oxidativo , ATPasas Asociadas con Actividades Celulares Diversas/química , ATPasas Asociadas con Actividades Celulares Diversas/genética , Animales , Células Cultivadas , Daño del ADN , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Células HEK293 , Células HeLa , Humanos , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Ratones , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Mitocondriales/química , Proteínas Mitocondriales/genética , Unión Proteica
9.
Development ; 149(6)2022 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-35237793

RESUMEN

The mitochondrial matrix AAA+ Lon protease (LONP1) degrades misfolded or unassembled proteins, which play a pivotal role in mitochondrial quality control. During heart development, a metabolic shift from anaerobic glycolysis to mitochondrial oxidative phosphorylation takes place, which relies strongly on functional mitochondria. However, the relationship between the mitochondrial quality control machinery and metabolic shifts is elusive. Here, we interfered with mitochondrial quality control by inactivating Lonp1 in murine embryonic cardiac tissue, resulting in severely impaired heart development, leading to embryonic lethality. Mitochondrial swelling, cristae loss and abnormal protein aggregates were evident in the mitochondria of Lonp1-deficient cardiomyocytes. Accordingly, the p-eIF2α-ATF4 pathway was triggered, and nuclear translocation of ATF4 was observed. We further demonstrated that ATF4 regulates the expression of Tfam negatively while promoting that of Glut1, which was responsible for the disruption of the metabolic shift to oxidative phosphorylation. In addition, elevated levels of reactive oxygen species were observed in Lonp1-deficient cardiomyocytes. This study revealed that LONP1 safeguards metabolic shifts in the developing heart by controlling mitochondrial protein quality, suggesting that disrupted mitochondrial quality control may cause prenatal cardiomyopathy.


Asunto(s)
Corazón , Mitocondrias Cardíacas , Proteasa La , Proteasas ATP-Dependientes/metabolismo , Animales , Corazón/crecimiento & desarrollo , Ratones , Mitocondrias Cardíacas/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Fosforilación Oxidativa , Proteasa La/genética , Proteasa La/metabolismo
10.
J Am Chem Soc ; 146(7): 4727-4740, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38330247

RESUMEN

Cooperative bimetallic catalysis to access novel reactivities is a powerful strategy for reaction development in transition-metal-catalyzed chemistry. Particularly, elucidation of the evolution of two transition-metal catalysts and understanding their roles in dual catalysis are among the most fundamental goals for bimetallic catalysis. Herein, a novel three-component reaction of a terminal alkyne, a diazo ester, and an allylic carbonate was successfully developed via cooperative Cu/Rh catalysis with Xantphos as the ligand, providing a highly efficient strategy to access 1,5-enynes with an all-carbon quaternary center that can be used as immediate synthetic precursors for complex cyclic molecules. Notably, a Meyer-Schuster rearrangement was involved in the reactions using propargylic alcohols, resulting in an unprecedented acylation-allylation of carbenes. Mechanistic studies suggested that in the course of the reaction Cu(I) species might aggregate to some types of Cu clusters and nanoparticles (NPs), while the Rh(II)2 precursor can dissociate to mono-Rh species, wherein Cu NPs are proposed to be responsible for the alkynylation of carbenes and work in cooperation with Xantphos-coordinated dirhodium(II) or Rh(I)-catalyzed allylic alkylation.

11.
J Am Chem Soc ; 146(28): 19599-19608, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-38952064

RESUMEN

Crystalline polyethylenes bearing carboxylic acid groups in the main chain were successfully degraded with a Ce catalyst and visible light. The reaction proceeds in a crystalline solid state without swelling in acetonitrile or water at a reaction temperature as low as 60 or 80 °C, employing dioxygen in air as the only stoichiometric reactant with nearly quantitative recovery of carbon atoms. Heterogeneous features of the reaction allowed us to reveal a dynamic morphological change of polymer crystals during the degradation.

12.
Opt Express ; 32(8): 14018-14032, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38859359

RESUMEN

Developing advanced luminescent materials that are recognizable under specified conditions provides better opportunity for reliable optical anti-counterfeiting techniques. In this work, to the best of our knowledge, novel GdInO3:Tm,Yb perovskite phosphors with ultrafine sizes and rounded morphologies were successfully synthesized by a facile chemical precipitation route. Two-type perovskites with orthorhombic and hexagonal structures could be obtained by calcining the precursor at 850 and 1100 °C, respectively. Under 980 nm excitation, the two phosphors exhibited cyan-bluish emission at ∼460-565 nm, red emission at 645-680 nm, and near-infrared emission at 770-825 nm arising from 1G4 + 1D2→3H5,6, 3F2,3→3H6, and 3H4→3H6 transitions of Tm3+, respectively, where the hexagonal perovskite phosphor had relatively strong and sharp red emission as well as red-shifted cyan-bluish emission via successive cross relaxations. The Yb3+ sensitizer enhanced the upconversion luminescence via effective Yb3+→Tm3+ energy transfer and the optimal Yb3+ concentrations were 10 at.% for orthorhombic perovskite and 5 at.% for hexagonal one. The upconversion mechanism mainly ascribed to two-photon processes while three-photon was also present. Upon excitation at 254 nm, their down-conversion spectra exhibited broad multibands in the wavelength range of 400-500 nm deriving from combined effects of the defect-induced emission of GdInO3 and the 1D2→3F4 + 4G4→3H6 emissions of Tm3+. The energy transfer from GdInO3 defect level to Tm3+ excitation state was observed for the first time. The unclonable security codes prepared by screen printing from those dual-mode emitting perovskite phosphors were almost invisible under natural light, which had promising potential for anti-counterfeiting application.

13.
Psychol Med ; : 1-10, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38720516

RESUMEN

BACKGROUND: Major depressive disorder (MDD) is one of the most prevalent and disabling illnesses worldwide. Treatment of MDD typically relies on trial-and-error to find an effective approach. Identifying early response-related biomarkers that predict response to antidepressants would help clinicians to decide, as early as possible, whether a particular treatment might be suitable for a given patient. METHODS: Data were from the two-stage Establishing Moderators and Biosignatures of Antidepressant Response for Clinical Care (EMBARC) trial. A whole-brain, voxel-wise, mixed-effects model was applied to identify early-treatment cerebral blood flow (CBF) changes as biomarkers of treatment response. We examined changes in CBF measured with arterial spin labeling 1-week after initiating double-masked sertraline/placebo. We tested whether these early 1-week scans could be used to predict response observed after 8-weeks of treatment. RESULTS: Response to 8-week placebo treatment was associated with increased cerebral perfusion in temporal cortex and reduced cerebral perfusion in postcentral region captured at 1-week of treatment. Additionally, CBF response in these brain regions was significantly correlated with improvement in Hamilton Depression Rating Scale score in the placebo group. No significant associations were found for selective serotonin reuptake inhibitor treatment. CONCLUSIONS: We conclude that early CBF responses to placebo administration in multiple brain regions represent candidate neural biomarkers of longer-term antidepressant effects.

14.
Eur Radiol ; 34(8): 4950-4959, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38224375

RESUMEN

OBJECTIVES: As a novel imaging marker, pericoronary fat attenuation index (FAI) reflects the local coronary inflammation which is one of the major mechanisms for in-stent restenosis (ISR). We aimed to validate the ability of pericoronary FAI to predict ISR in patients undergoing percutaneous coronary intervention (PCI). MATERIALS AND METHODS: Patients who underwent coronary CT angiography (CCTA) before PCI within 1 week between January 2017 and December 2019 at our hospital and had follow-up invasive coronary angiography (ICA) or CCTA were enrolled. Pericoronary FAI was measured at the site where stents would be placed. ISR was defined as ≥ 50% diameter stenosis at follow-up ICA or CCTA in the in-stent area. Multivariable analysis using mixed effects logistic regression models was performed to test the association between pericoronary FAI and ISR at lesion level. RESULTS: A total of 126 patients with 180 target lesions were included in the study. During 22.5 months of mean interval time from index PCI to follow-up ICA or CCTA, ISR occurred in 40 (22.2%, 40/180) stents. Pericoronary FAI was associated with a higher risk of ISR (adjusted OR = 1.12, p = 0.028). The optimum cutoff was - 69.6 HU. Integrating the dichotomous pericoronary FAI into current state of the art prediction model for ISR improved the prediction ability of the model significantly (△area under the curve = + 0.064; p = 0.001). CONCLUSION: Pericoronary FAI around lesions with subsequent stent placement is independently associated with ISR and could improve the ability of current prediction model for ISR. CLINICAL RELEVANCE STATEMENT: Pericoronary fat attenuation index can be used to identify the lesions with high risk for in-stent restenosis. These lesions may benefit from extra anti-inflammation treatment to avoid in-stent restenosis. KEY POINTS: • Pericoronary fat attenuation index reflects the local coronary inflammation. • Pericoronary fat attenuation index around lesions with subsequent stents placement can predict in-stent restenosis. • Pericoronary fat attenuation index can be used as a marker for future in-stent restenosis.


Asunto(s)
Angiografía por Tomografía Computarizada , Angiografía Coronaria , Reestenosis Coronaria , Intervención Coronaria Percutánea , Valor Predictivo de las Pruebas , Stents , Humanos , Masculino , Femenino , Reestenosis Coronaria/diagnóstico por imagen , Reestenosis Coronaria/etiología , Persona de Mediana Edad , Intervención Coronaria Percutánea/métodos , Stents/efectos adversos , Angiografía por Tomografía Computarizada/métodos , Anciano , Tejido Adiposo/diagnóstico por imagen , Estudios Retrospectivos , Tejido Adiposo Epicárdico
15.
Inorg Chem ; 63(15): 6787-6797, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38556762

RESUMEN

The electrocatalytic reduction of NO2- (NO2RR) holds promise as a sustainable pathway to both promoting the development of emerging NH3 economies and allowing the closing of the NOx loop. Highly efficient electrocatalysts that could facilitate this complex six-electron transfer process are urgently desired. Herein, tremella-like CoNi-LDH intercalated by cyclic polyoxometalate (POM) anion P8W48 (P8W48/CoNi-LDH) prepared by a simple two-step hydrothermal-exfoliation assembly method is proposed as an effective electrocatalyst for NO2- to NH3 conversion. The introduction of POM with excellent redox ability tremendously increased the electrocatalytic performance of CoNi-LDH in the NO2RR process, causing P8W48/CoNi-LDH to exhibit large NH3 yield of 0.369 mmol h-1 mgcat-1 and exceptionally high Faradic efficiency of 97.0% at -1.3 V vs the Ag/AgCl reference electrode in 0.1 M phosphate buffer saline (PBS, pH = 7) containing 0.1 M NO2-. Furthermore, P8W48/CoNi-LDH demonstrated excellent durability during cyclic electrolysis. This work provides a new reference for the application of POM-based nanocomposites in the electrochemical reduction of NO2- to obtain value-added NH3.

16.
Acta Pharmacol Sin ; 45(6): 1214-1223, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38467718

RESUMEN

CD80 is a transmembrane glycoprotein belonging to the B7 family, which has emerged as a crucial molecule in T cell modulation via the CD28 or CTLA4 axes. CD80-involved regulation of immune balance is a finely tuned process and it is important to elucidate the underlying mechanism for regulating CD80 function. In this study we investigated the post-translational modification of CD80 and its biological relevance. By using a metabolic labeling strategy, we found that CD80 was S-palmitoylated on multiple cysteine residues (Cys261/262/266/271) in both the transmembrane and the cytoplasmic regions. We further identified zDHHC20 as a bona fide palmitoyl-transferase determining the S-palmitoylation level of CD80. We demonstrated that S-palmitoylation protected CD80 protein from ubiquitination degradation, regulating the protein stability, and ensured its accurate plasma membrane localization. The palmitoylation-deficient mutant (4CS) CD80 disrupted these functions, ultimately resulting in the loss of its costimulatory function upon T cell activation. Taken together, our results describe a new post-translational modification of CD80 by S-palmitoylation as a novel mechanism for the regulation of CD80 upon T cell activation.


Asunto(s)
Aciltransferasas , Antígeno B7-1 , Lipoilación , Activación de Linfocitos , Humanos , Antígeno B7-1/metabolismo , Aciltransferasas/metabolismo , Células HEK293 , Linfocitos T/metabolismo , Linfocitos T/inmunología , Procesamiento Proteico-Postraduccional , Ubiquitinación
17.
Acta Pharmacol Sin ; 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39009651

RESUMEN

Triple-negative breast cancer (TNBC) is incurable and prone to widespread metastasis. Therefore, identification of key targets for TNBC progression is urgently needed. Our previous study revealed that isotoosendanin (ITSN) reduced TNBC metastasis by targeting TGFßR1. ITSN is currently used as an effective chemical probe to further discover the key molecules involved in TNBC metastasis downstream of TGFßR1. The results showed that GOT2 was the gene downstream of Smad2/3 and that ITSN decreased GOT2 expression by abrogating the activation of the TGF-ß-Smad2/3 signaling pathway through directly binding to TGFßR1. GOT2 was highly expressed in TNBC, and its knockdown decreased TNBC metastasis. However, GOT2 overexpression reversed the inhibitory effect of ITSN on TNBC metastasis both in vitro and in vivo. GOT2 interacted with MYH9 and hindered its binding to the E3 ubiquitin ligase STUB1, thereby reducing MYH9 ubiquitination and degradation. Moreover, GOT2 also enhanced the translocation of MYH9 to mitochondria and thus induced DRP1 phosphorylation, thereby promoting mitochondrial fission and lamellipodia formation in TNBC cells. ITSN-mediated inhibition of mitochondrial fission and lamellipodia formation was associated with reduced GOT2 expression. In conclusion, ITSN prevented MYH9-regulated mitochondrial fission and lamellipodia formation in TNBC cells by enhancing MYH9 protein degradation through a reduction in GOT2 expression, thus contributing to its inhibition of TNBC metastasis.

18.
Acta Biochim Biophys Sin (Shanghai) ; 56(5): 697-708, 2024 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-38591121

RESUMEN

Hepatocellular carcinoma (HCC) is one of the most prevalent and deadly cancers in the world, which is frequently diagnosed at a late stage. HCC patients have a poor prognosis due to the lack of an efficacious therapeutic strategy. Approved drug repurposing is a way for accelerating drug discovery and can significantly reduce the cost of drug development. Carfilzomib (CFZ) is a second-generation proteasome inhibitor, which is highly efficacious against multiple myeloma and has been reported to possess potential antitumor activities against multiple cancers. However, the underlying mechanism of CFZ on HCC is still unclear. Here, we show that CFZ inhibits the proliferation of HCC cells through cell cycle arrest at the G2/M phase and suppresses the migration and invasion of HCC cells by inhibiting epithelial-mesenchymal transition. We also find that CFZ promotes reactive oxygen species production to induce endoplasmic reticulum (ER) stress and activate JNK/p38 MAPK signaling in HCC cells, thus inducing cell death in HCC cells. Moreover, CFZ significantly inhibits HCC cell growth in a xenograft mouse model. Collectively, our study elucidates that CFZ impairs mitochondrial function and activates ER stress and JNK/p38 MAPK signaling, thus inhibiting HCC cell and tumor growth. This indicates that CFZ has the potential as a therapeutic drug for HCC.


Asunto(s)
Apoptosis , Carcinoma Hepatocelular , Estrés del Retículo Endoplásmico , Neoplasias Hepáticas , Oligopéptidos , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Estrés del Retículo Endoplásmico/efectos de los fármacos , Humanos , Oligopéptidos/farmacología , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/patología , Animales , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Ratones , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Proliferación Celular/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto , Ratones Desnudos , Movimiento Celular/efectos de los fármacos , Transición Epitelial-Mesenquimal/efectos de los fármacos , Ratones Endogámicos BALB C
19.
Proc Natl Acad Sci U S A ; 118(29)2021 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-34261790

RESUMEN

Mitochondria form tubular networks that undergo coordinated cycles of fission and fusion. Emerging evidence suggests that a direct yet unresolved interaction of the mechanoenzymatic GTPase dynamin-related protein 1 (Drp1) with mitochondrial outer membrane-localized cardiolipin (CL), externalized under stress conditions including mitophagy, catalyzes essential mitochondrial hyperfragmentation. Here, using a comprehensive set of structural, biophysical, and cell biological tools, we have uncovered a CL-binding motif (CBM) conserved between the Drp1 variable domain (VD) and the unrelated ADP/ATP carrier (AAC/ANT) that intercalates into the membrane core to effect specific CL interactions. CBM mutations that weaken VD-CL interactions manifestly impair Drp1-dependent fission under stress conditions and induce "donut" mitochondria formation. Importantly, VD membrane insertion and GTP-dependent conformational rearrangements mediate only transient CL nonbilayer topological forays and high local membrane constriction, indicating that Drp1-CL interactions alone are insufficient for fission. Our studies establish the structural and mechanistic bases of Drp1-CL interactions in stress-induced mitochondrial fission.


Asunto(s)
Cardiolipinas/metabolismo , Dinaminas/química , Dinaminas/metabolismo , Dinámicas Mitocondriales/fisiología , Secuencias de Aminoácidos , Sitios de Unión , Dinaminas/genética , Humanos , Proteínas Intrínsecamente Desordenadas/química , Proteínas Intrínsecamente Desordenadas/genética , Proteínas Intrínsecamente Desordenadas/metabolismo , Espectroscopía de Resonancia Magnética , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , Membranas Mitocondriales/patología , Mitofagia , Mutación , Unión Proteica , Conformación Proteica
20.
Artículo en Inglés | MEDLINE | ID: mdl-38687862

RESUMEN

Objective: The study aims to assess and compare the outcomes of modified radical surgery, preserving the nipple-areola complex, against radical mastectomy in patients with triple-negative breast cancer. Emphasis is placed on the clinical significance of this comparison, including its potential impact on patient outcomes, quality of life, and healthcare resources. Methods: Relevant literature from January 2017 to January 2022 was searched in the following databases: PubMed, Embase, MEDLINE, Science Citation Index, Web of Science, China National Knowledge Internet, CCD, and CSPD with keywords. The electric search yielded 613 relevant articles, including 351 from Pubmed, 187 from Embase, 5 from MEDLINE, 21 from CNKI, 4 from CCD, and 45 from CSPD. After duplicate screening, 185 items were eliminated, leaving 428 articles. Odds ratios (ORs) and 95% confidence intervals (CIs) were calculated with RevMan 5.3, and sensitivity analysis, cumulative meta-analysis, and publication bias analysis were also performed. A total of 613 relevant articles were collected from the above databases, among which 428 articles remained after the initial screening and were further screened based on the established inclusion and exclusion criteria. The efficacy of modified radical surgery and breast-conserving surgery in the treatment of early breast cancer was assessed by analyzing outcome indicators, including recurrence rate, distant metastatic rate, and three-year survival rate. The methods section details a systematic approach to data collection and analysis, specifying the databases and time frame for the literature search and the statistical tools used for the meta-analysis. The selection process, from the initial number of articles to the final inclusion based on defined criteria, is transparent, ensuring the study's methodological robustness in evaluating the efficacy of surgeries for early breast cancer. Results: Finally, ten articles were found to match the criteria and included in this study. According to the meta-analysis, there was no statistically significant difference between the breast-conserving therapy (BCT) and modified radical mastectomy (MRM) groups in terms of the recurrence rate (OR = 0.76, 95%CI = 0.39, 1.55, P > .05) and distant metastatic rate (OR = 0.81, 95%CI = 0.46, 1.31, P > .05). Nevertheless, the three-year survival rate was 85.2% in the BCT group and 91.7% in the MRM group; a statistically significant difference was observed in the three-year survival rate (OR = 1.47, 95%CI = 1.01, 2.37, P = .03) between the BCT and MRM groups. Accordingly, breast-conserving surgery and modified radical surgery produced comparable clinical outcomes for the treatment of early breast cancer. Conclusion: In the treatment of early breast cancer, breast-conserving surgery has the advantages of less bleeding, fewer clinical complications, and favorable cosmetic outcomes compared with modified radical surgery. Furthermore, patients with breast-conserving surgery showed comparable recurrence and distant metastatic rates to those with modified radical surgery in postoperative follow-up, which, therefore is a suitable treatment option for the widespread recommendation. The study's findings hold significant clinical relevance, implying that while BCT remains a viable option, MRM may offer a survival advantage. This insight empowers both patients and clinicians in making informed, personalized treatment decisions tailored to individual circumstances.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA