Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Exp Cell Res ; 409(2): 112943, 2021 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-34808131

RESUMEN

Rheumatoid arthritis (RA) is a chronic inflammation mediated by autoimmune responses. HOTTIP, a long noncoding RNA (lncRNA), participates in cell proliferation and invasion. However, the correlation between HOTTIP and RA remains unclear. Therefore, this study aimed to clarify how HOTTIP works in RA and to investigate its role in the development of RA. Flow cytometry was used to analyze cell cycle progression. Binding between HOTTIP, signal transducer and activator of transcription 3 (STAT3) and miR-1908-5p was demonstrated by dual-luciferase assays. Quantitative real-time polymerase chain reaction (qRT-PCR) was used to measure the expression of T cell differentiation-related proteins. We found that HOTTIP was upregulated in rheumatoid arthritis synovial fibroblasts (RASFs). HOTTIP directly bound to miR-1908-5p and negatively modulated miR-1908-5p expression while positively regulating STAT3. The effects of HOTTIP overexpression on regulating the balance of the Th17/Treg cell ratio were partly reversed by miR-1908-5p overexpression. In addition, in vivo experiments demonstrated that overexpression of HOTTIP aggravated inflammation in RA mice, which was demonstrated by hematoxylin and eosin (HE) staining and the increased expression levels of CD4+ interleukin (IL)-17+, forkhead Box P3 (FOXP3) and retinoid-related orphan receptor gamma-t (RORγt). In summary, our study suggests that HOTTIP plays a damaging role in RA by promoting inflammation, which may be related to the regulation of miR-1908-5p expression and the STAT3 signaling pathway. These results suggest that the regulation of HOTTIP may be a promising therapeutic strategy for RA.


Asunto(s)
Artritis Experimental/patología , Artritis Reumatoide/patología , Exosomas/genética , MicroARNs/genética , ARN Largo no Codificante/genética , Factor de Transcripción STAT3/metabolismo , Sinoviocitos/metabolismo , Animales , Apoptosis , Artritis Experimental/etiología , Artritis Experimental/metabolismo , Artritis Reumatoide/etiología , Artritis Reumatoide/metabolismo , Proliferación Celular , Células Cultivadas , Citocinas/metabolismo , Modelos Animales de Enfermedad , Fibroblastos/metabolismo , Fibroblastos/patología , Ratones , Factor de Transcripción STAT3/genética , Sinoviocitos/patología
2.
Sci Total Environ ; 949: 174862, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-39038680

RESUMEN

Manganese is an indispensable metal widely used in various fields. China ranks as the fourth-largest producer of manganese ore and the largest producer of electrolytic manganese metal (EMM). However, EMM production is linked to high energy consumption and pollution. This study conducts a life cycle assessment (LCA) of EMM production in the Manganese Triangle region of China to comprehensively evaluate its environmental impact. Results show that Human carcinogenic toxicity, mainly from electricity generation (65.3 %) and mining activities (24.4 %), is the most significant environmental impact. Chromium (VI) is identified as the predominant hazardous substance, contributing up to 91 % to Human carcinogenic toxicity. Endpoint results estimate that the production of 1 t of EMM results in 1.01E-02 DALY of harm to human health, 1.97E-05 species.yr of harm to the ecosystem, and $227.15 worth of resource depletion. Simulation scenarios demonstrate that replacing thermal power with hydropower can reduce environmental pollution by over 90 %. Finally, based on the findings, technical measures for promoting clean production of EMM were proposed.

3.
Sci Total Environ ; 912: 169236, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38072252

RESUMEN

Coal mining has important detrimental effects on the environment and human health. By the end of 2022, China mined more than 4 billion tons of raw coal, and coal mining contributed to adverse environmental impacts. The objective of this work is to evaluate the environmental impacts emanated from coal mines in different periods (construction period, production period and closing period) and to find the relationship between coal mine scale and ecological impacts. This study uses coal mines that produce 0.45 Mt/a (considered a medium sized mine), 3 Mt/a and 8 Mt/a (both classified as large mines in this study) and a 12 Mt/a extra-large coal mine. Based on the time dimension, the mine life cycle was classified into construction, production and closing period, and the life cycle assessment method was used to conduct environmental assessment. The main influencing substances and key processes were tracked. The results indicated that mining engineering and gangue are the main factors affecting the construction and production periods of coal mines. Freshwater ecotoxicity, marine ecotoxicity, and human toxicity are the main environmental effects of coal produce, and they are mostly brought up by the release of hazardous elements like copper, chromium, zinc, nickel, and copper. Furan, formaldehyde, and chromium emissions during mine closure can be effectively reduced through environmental compensation, however coal mines' environmental compensation during mine closure is minimal. The environmental impact of coal mines producing 3 Mt and 8 Mt annually is minimal. The environmental impact of 0.45 Mt/a and 3 Mt/a coal mines is more prominent in the construction period. The pollutant discharge throughout the production phase, particularly the metal leaching discharge from gangue, needs to receive more attention from the 8 Mt/a and 12 Mt/a coal mines. Additionally, the larger the scale of coal mine production, the greater the proportion of the total environmental impact in the production stage.

4.
Sci Total Environ ; 849: 157797, 2022 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-35932851

RESUMEN

The dumping of cement production and industrial solid waste can cause severe environmental impact. In order to reduce the environmental impact of cement production and reasonably dispose of solid waste, a new type of cementing material was developed using industrial solid waste as raw materials. It solves the problem that low activity solid waste is difficult to reuse and makes up for the less research, which considered both preparation and environmental evaluation. The orthogonal tests of cement mortar strength as well as life cycle assessment were carried out. The results from variance and range analyses of the orthogonal tests revealed that the fraction of solid waste mainly affected the compressive strength of the solid waste cement mortar, and its specific surface area primarily influenced the flexural strength. After curing for 28 days, the compressive and flexural strength values of the developed cementing material were 40.6 MPa and 8.6 MPa, respectively. The results of life cycle impact assessment indicated that the developed solid waste cement had more environmental advantages than ordinary cement in 18 midpoints environmental impact types, and could diminish environmental impact by 16.1 % on the whole. The solid waste cement has achieved great environmental gains in the human toxicity, natural land transformation, metal depletion, climate change and other environmental impact categories. In addition, the clinker calcination, transportation and material mining were identified as critical processes responsible for the human toxicity, natural land transformation and metal depletion. Through sensitivity and uncertainty analyses, the development of the solid waste cement was proved to be the most effective method to decrease the environmental impact of cement. Finally, the methods of further reducing the environmental impact of cement were proposed.


Asunto(s)
Residuos Sólidos , Titanio , Animales , Materiales de Construcción , Humanos , Residuos Industriales/análisis , Estadios del Ciclo de Vida
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA