Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Phys Rev Lett ; 131(11): 110802, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37774301

RESUMEN

The passive approach to quantum key distribution (QKD) consists of removing all active modulation from the users' devices, a highly desirable countermeasure to get rid of modulator side channels. Nevertheless, active modulation has not been completely removed in QKD systems so far, due to both theoretical and practical limitations. In this Letter, we present a fully passive time-bin encoding QKD system and report on the successful implementation of a modulator-free QKD link. According to the latest theoretical analysis, our prototype is capable of delivering competitive secret key rates in the finite key regime.

2.
Opt Express ; 30(16): 28534-28549, 2022 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-36299046

RESUMEN

There is no doubt that measurement-device-independent quantum key distribution (MDI-QKD) is a crucial protocol that is immune to all possible detector side channel attacks. In the preparation phase, a simulation model is usually employed to get a set of optimized parameters, which is utilized for getting a higher secure key rate in reality. With the implementation of high-speed QKD, the afterpulse effect which is an intrinsic characteristic of the single-photon avalanche photodiode is no longer ignorable, this will lead to a great deviation compared with the existing analytical model. Here we develop an afterpulse-compatible MDI-QKD model to get the optimized parameters. Our results indicate that by using our afterpulse-compatible model, we can get a much higher key rate than the prior afterpulse-omitted model. It is significant to take the afterpulse effect into consideration because of the improvement of the system working frequency.

3.
Opt Express ; 28(15): 22594-22605, 2020 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-32752517

RESUMEN

Quantum key distribution (QKD) can help two distant peers to share secret key bits, whose security is guaranteed by the law of physics. In practice, the secret key rate of a QKD protocol is always lowered with the increasing of channel distance, which severely limits the applications of QKD. Recently, twin-field (TF) QKD has been proposed and intensively studied, since it can beat the rate-distance limit and greatly increase the achievable distance of QKD. Remarkalebly, K. Maeda et. al. proposed a simple finite-key analysis for TF-QKD based on operator dominance condition. Although they showed that their method is sufficient to beat the rate-distance limit, their operator dominance condition is not general, i.e. it can be only applied in three decoy states scenarios, which implies that its key rate cannot be increased by introducing more decoy states, and also cannot reach the asymptotic bound even in case of preparing infinite decoy states and optical pulses. Here, to bridge this gap, we propose an improved finite-key analysis of TF-QKD through devising new operator dominance condition. We show that by adding the number of decoy states, the secret key rate can be furtherly improved and approach the asymptotic bound. Our theory can be directly used in TF-QKD experiment to obtain higher secret key rate. Our results can be directly used in experiments to obtain higher key rates.

4.
Opt Express ; 28(15): 22719, 2020 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-32752528

RESUMEN

Two errata are presented to correct two typographical errors in our paper.

5.
Opt Express ; 28(10): 15416-15423, 2020 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-32403569

RESUMEN

Since the round-robin-differential-phase-shift (RRDPS) quantum key distribution (QKD) protocol was proposed, it has attracted much attention due to its unique characteristic i.e., it can bind the amount of information leakage without monitoring signal disturbance. Recently, Yin et al. have developed a novel theory to estimate its information leakage tightly. However, the finite-sized key effects are not taken into account. Here, we fill this gap and extend the security proof of the RRDPS protocol to the finite-sized regime using post-selection technique. As a consequence, it's predicted that the key rate of RRDPS in a finite-sized key scenario can be comparable to the asymptotic one, which is meaningful for the real-life applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA