Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Reprod Domest Anim ; 58(12): 1718-1731, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37917549

RESUMEN

Follistatin (FST), a member of the transforming growth factor-ß (TGF-ß) superfamily, has been identified as an inhibitor of follicle-stimulating hormone. Previous studies showed that it plays an important role in animal reproduction. Therefore, this study aims to investigate its effect on the maturation of buffalo oocytes in vitro, and the underlying mechanism of FST affecting oocyte maturation was also explored in buffalo cumulus cells. Results showed that FST was enriched in the ovary and expressed at different stages of buffalo ovarian follicles as well as during oocyte maturation and early embryo development. The FST expression level was up-regulated in MII buffalo oocytes compared with the GV stage (p < .05). To study the effects of FST on buffalo oocytes' maturation and early embryonic development, we added the pcD3.1 skeleton vector and PCD3.1-EGFP-FST vector into the maturation fluid of buffalo oocytes, respectively. It was demonstrated that FST promoted the in vitro maturation rate of buffalo oocytes and the blastocyst rate of embryos cultured in vitro (p < .05). By interfering with FST expression, we discovered that FST in cumulus cells plays a crucial role in oocyte maturation. Interference with the FST expression during the buffalo oocyte maturation did not affect the first polar body rate of buffalo oocyte (p > .05). In contrast, the location of mitochondria in oocytes was abnormal, and the cumulus expansion area was reduced (p < .05). After parthenogenetic activation, the cleavage and blastocyst rates of the FST-interfered group were reduced (p < .05). Furthermore, RT-qPCR was performed to investigate further the underlying mechanism by which FST enhances oocyte maturation. We found that overexpression of FST could up-regulate the expression level of apoptosis suppressor gene Bcl-2 and TGF-ß/SMAD pathway-related genes TGF-ß, SMAD2, and SMAD3 (p < .05). In contrast, the expression levels of SMAD4 and pro-apoptotic gene BAX were significantly decreased (p < .05). The FST gene could affect buffalo oocyte maturation by regulating the oocyte mitochondria integrity, the cumulus expansion, cumulus cell apoptosis, and the expression levels of TGF-ß/SMAD pathway-related genes.


Asunto(s)
Búfalos , Folistatina , Femenino , Animales , Búfalos/genética , Búfalos/metabolismo , Folistatina/genética , Técnicas de Maduración In Vitro de los Oocitos/veterinaria , Técnicas de Maduración In Vitro de los Oocitos/métodos , Oocitos , Folículo Ovárico/fisiología , Desarrollo Embrionario , Blastocisto , Células del Cúmulo/fisiología , Factor de Crecimiento Transformador beta
2.
Reprod Domest Anim ; 58(11): 1628-1635, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37668268

RESUMEN

Granulosa cells (GCs) synthesize estrogens needed for follicular growth. However, the effects of androgen on estrogen production in buffalo GCs remain unclear. In this study, the impacts of testosterone on estrogen synthesis in buffalo GCs were examined. The results showed that testosterone that was added to cell medium at a concentration of 10-7 mol/L and applied to GCs for 48 or 72 h enhanced the estrogen synthesis of buffalo GCs. This study provides a theoretical basis for further exploration of ovarian endocrine mechanism for steroidogenesis.


Asunto(s)
Búfalos , Testosterona , Femenino , Animales , Células de la Granulosa , Estrógenos/farmacología , Suplementos Dietéticos
3.
Microsc Microanal ; : 1-12, 2022 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-36097786

RESUMEN

Since embryonic stem cells (ESCs) were first identified, significant progress has been achieved. However, the establishment of buffalo ESCs (bESCs) is still unclear. This study was undertaken to explore the effect of the blastocyst stage on the isolation of bESCs. Firstly, our results indicated that the pluripotent genes were mainly expressed at the early stages of blastocyst, and the attachment and colony formation rates of bESCs derived from expanded blastocyst and hatched blastocyst were significantly higher than early blastocyst and blastocyst. In the meantime, bESCs showed positive alkaline phosphatase activity and expressed genes like OCT4, NANOG, SOX2, c-MYC, CDH1, KLF4, and TBX3. Immunofluorescence also confirmed the expression of OCT4, SOX2. Embryoid bodies expressing three marker genes were generated from the differentiation experiment, and fibroblast, epithelial, and neuron-like cells were induced. Moreover, naive-related genes KLF4, TBX3, primed-related genes FGF5, ACTA2 were expressed in the cells, but not REX-1. Immunofluorescence and western blot confirmed the FGF5 expression. Furthermore, bESCs could maintain pluripotency with the signal of LIF and bFGF. In summary, our results indicated that expanded blastocyst and hatched blastocyst are more suitable for bESCs isolation.

4.
Reprod Domest Anim ; 57(2): 141-148, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34057767

RESUMEN

Granulosa cells (GCs) play a crucial role in follicular development and atresia. Previous studies have showed that GCs in the form of monolayer influenced in vitro maturation (IVM) of oocytes. However, the effects of GCs in the form of conditioned medium and monolayer on IVM and development competence of buffalo oocytes remain unclear. In the present study, we examined the impacts of GC-conditioned medium (GCCM) and monolayer GC on maturation efficiency and embryo development of buffalo oocytes after parthenogenetic activation (PA). Our results showed that GCCM that was collected on day 2 and added to IVM medium at a 20% proportional level (2 days and 20%) exerted significant negative effects on IVM rate (41.6% vs. 44.5%), but significantly enhanced embryo development (oocyte cleavage, 81.3% vs. 69.3%; blastocyst formation, 36.3% vs. 29.3%) of buffalo oocytes after PA compared with the control group. Furthermore, monolayer GC significantly reduced both maturation efficiency (40.2% vs. 44.5%) and embryo development (oocyte cleavage, 60.6% vs. 69.3%; blastocyst formation, 20.6% vs. 29.3%) of buffalo oocytes after PA compared to the control group. Our study indicated that GCs in the form of GCCM (2 days and 20%) and monolayer GC had different effects on IVM and subsequent parthenogenetic development of buffalo oocytes.


Asunto(s)
Búfalos , Técnicas de Maduración In Vitro de los Oocitos , Animales , Blastocisto , Medios de Cultivo Condicionados , Desarrollo Embrionario , Femenino , Células de la Granulosa , Técnicas de Maduración In Vitro de los Oocitos/veterinaria , Oocitos
5.
Microsc Microanal ; 27(2): 409-419, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33478599

RESUMEN

Somatic cell nuclear transfer (SCNT) holds vast potential in agriculture. However, its applications are still limited by its low efficiency. Histone 3 lysine 9 trimethylation (H3K9me3) was identified as an epigenetic barrier for this. Histone demethylase KDM4D could regulate the level of H3K9me3. However, its effects on buffalo SCNT embryos are still unclear. Thus, we performed this study to explore the effects and underlying mechanism of KDM4D on buffalo SCNT embryos. The results revealed that compared with the IVF embryos, the expression level of KDM4D in SCNT embryos was significantly lower at 8- and 16-cell stage, while the level of H3K9me3 in SCNT embryos was significantly higher at 2-cell, 8-cell, and blastocyst stage. Microinjection of KDM4D mRNA could promote the developmental ability of buffalo SCNT embryos. Furthermore, the expression level of ZGA-related genes such as ZSCAN5B, SNAI1, eIF-3a, and TRC at the 8-cell stage was significantly increased. Meanwhile, the pluripotency-related genes like POU5F1, SOX2, and NANOG were also significantly promoted at the blastocyst stage. The results were reversed after KDM4D was inhibited. Altogether, these results revealed that KDM4D could correct the H3K9me3 level, increase the expression level of ZGA and pluripotency-related genes, and finally, promote the developmental competence of buffalo SCNT embryos.


Asunto(s)
Búfalos , Histona Demetilasas , Animales , Blastocisto , Embrión de Mamíferos , Desarrollo Embrionario , Técnicas de Transferencia Nuclear
6.
Reprod Domest Anim ; 56(2): 254-262, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32748525

RESUMEN

Theca cells (TCs) play a crucial role in follicular development and atresia. TCs synthesize androgens that act as substrate for granulosa cells (GCs) aromatization to oestrogens needed for follicular growth. However, the effects of TCs in the form of conditioned medium on steroidogenesis in buffalo GCs remain unclear. In the present study, the impacts of TC-conditioned medium (TCCM) on oestrogen synthesis in buffalo GCs were examined. The results showed that TCs secreted principally testosterone, but almost no androstenedione or oestradiol into TCCM. TCs at passage 3 had a stronger secretion capacity of testosterone in TCCM. Furthermore, TCCM collected at 72 hr improved both the expression levels of oestrogen synthesis-related genes (CYP11A1, CYP19A1, 3ß-HSD and 17ß-HSD) and the secretion levels of estradiol in GCs. The treatment of 72 hr in TCCM promoted both the expression levels of oestrogen synthesis-related genes (CYP11A1, CYP19A1 and 3ß-HSD) and the secretion levels of estradiol in GCs. Besides, TCCM that was collected at 72 hr and applied to GCs for 72 hr (72 & 72 hr) improved the sensitivity of buffalo GCs to FSH. This study indicates that TCCM (72 & 72 hr) enhances the steroidogenesis competence of GCs mainly through facilitating the responsiveness of GCs to FSH in buffalo.


Asunto(s)
Estradiol/metabolismo , Células de la Granulosa/metabolismo , Androstenodiona/metabolismo , Animales , Búfalos , Células Cultivadas , Medios de Cultivo Condicionados/farmacología , Estradiol/genética , Femenino , Regulación de la Expresión Génica , Testosterona/metabolismo , Células Tecales
7.
Reprod Domest Anim ; 56(2): 313-323, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33219627

RESUMEN

This study mainly explored the effects of Rapamycin on the growth of the Buffalo ear fibroblast (BEF) and embryonic developmental competence of somatic cell nuclear transfer (SCNT). The results show that the appropriate concentration (1 µM) of Rapamycin could significantly improve the proportion of the G0/G1 phase in BEF cells treated at a certain time (72 hr). Simultaneously, the percentage of the G0/G1 phase also was significantly higher than the serum starvation and control group. This may be related to Rapamycin inhibiting the phosphorylation of mTOR and affecting the expression of cell cycle-related genes (CDK2, CDK4, P27, CycleD1, and CycleD3). Besides, compared with the control group and serum-starved group, Rapamycin significantly decreased BEF cell apoptosis by reducing ROS generation. Moreover, these results also indicated that the proportion of BEF cells with normal chromosome multiples treated by Rapamycin is significantly higher than that of the serum-starved group (p < .05). Finally, this study explored the effects of Rapamycin and serum starvation on the embryonic developmental competence of SCNT. The results show that Rapamycin significantly increased the rate of 8-cell and blastocyst, compared with the control group and serum starvation group (p < .05). To summarize, these results indicate that Rapamycin improved the embryonic development competence of SCNT, which may be related to Rapamycin increasing the percentage of G0/G1 phase and maintaining BEF cell quality.


Asunto(s)
Búfalos/embriología , Desarrollo Embrionario/efectos de los fármacos , Técnicas de Transferencia Nuclear/veterinaria , Sirolimus/farmacología , Animales , Apoptosis , Ciclo Celular/genética , Células Cultivadas , Embrión de Mamíferos/efectos de los fármacos , Femenino , Fibroblastos/efectos de los fármacos , Embarazo
8.
Biol Reprod ; 102(4): 817-827, 2020 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-31916576

RESUMEN

Genome stability is critical for the normal development of preimplantation embryos, as DNA damages may result in mutation and even embryo lethality. Anti-silencing factor 1A (ASF1A) is a histone chaperone and enriched in the MII oocytes as a maternal factor, which may be associated with the maintenance of genome stability. Thus, this study was undertaken to explore the role of ASF1A in maintaining the genome stability of early mouse embryos. The ASF1A expressed in the preimplantation embryos and displayed a dynamic pattern throughout the early embryonic development. Inhibition of ASF1A expression decreased embryonic development and increased DNA damages. Overexpression of ASF1A improved the developmental potential and decreased DNA damages. When 293T cells that had been integrated with RGS-NHEJ were co-transfected with plasmids of pcDNA3.1-ASF1A, gRNA-NHEJ, and hCas9, less cells expressed eGFP, indicating that non-homologous end joining was reduced by ASF1A. When 293T cells were co-transfected with plasmids of HR-donor, gRNA-HR, hCas9, and pcDNA3.1-ASF1A, more cells expressed eGFP, indicating that homologous recombination (HR) was enhanced by ASF1A. These results indicate that ASF1A may be associated with the genome stability maintenance of early mouse embryos and this action may be mediated by promoting DNA damage repair through HR pathway.


Asunto(s)
Blastocisto/metabolismo , Proteínas de Ciclo Celular/metabolismo , Regulación del Desarrollo de la Expresión Génica , Inestabilidad Genómica/genética , Chaperonas Moleculares/metabolismo , Animales , Proteínas de Ciclo Celular/genética , Daño del ADN , Femenino , Ratones , Chaperonas Moleculares/genética
9.
Reprod Domest Anim ; 55(11): 1501-1510, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32767798

RESUMEN

Theca cells (TCs) play a key role in follicular growth and atresia. TCs synthesize androgens that act as substrate for granulosa cells (GCs) aromatization to estrogens needed for oocyte maturation. However, the effects of TCs in the form of conditioned medium on in vitro maturation (IVM) and developmental competence of buffalo oocytes remain unclear. In the present study, we examined the impacts of TC-conditioned medium (TCCM) on maturation efficiency and embryo development of buffalo oocytes after parthenogenic activation (PA). Our results showed that TCCM that was collected on day 2 and added to IVM medium at a 20% proportional level (2 days & 20%) exerted no significant effect on IVM rate (43.06% vs. 44.71%), but significantly (p  < .05) enhanced embryo development (oocyte cleavage, 80.93% vs. 69.66%; blastocyst formation, 39.85% vs. 32.84%) of buffalo oocytes after PA compared with the control group. However, monolayer TC significantly (p < .05) promoted both maturation efficiency (48.84% vs. 44.53%) and embryo development (oocyte cleavage, 80.39% vs. 69.32%; blastocyst formation, 35.38% vs. 29.25%) of buffalo oocytes after PA compared to that in the control group. Furthermore, TCs secreted some testosterone into the conditioned medium, which significantly (p < .05) promoted the expression levels of oestrogen synthesis-related genes (CYP11A1, CYP19A1 and 17ß-HSD) in buffalo cumulus-oocyte complexes (COCs). Our study indicated that TCCM (2 days & 20%) did not significantly affect IVM efficiency, but enhanced embryo developmental competence of oocytes after PA principally by stimulating the secretion of testosterone and facilitating estradiol synthesis of buffalo COCs.


Asunto(s)
Búfalos/fisiología , Medios de Cultivo Condicionados/farmacología , Técnicas de Cultivo de Embriones/veterinaria , Técnicas de Maduración In Vitro de los Oocitos/veterinaria , Animales , Blastocisto , Células del Cúmulo , Estradiol/metabolismo , Femenino , Técnicas de Maduración In Vitro de los Oocitos/métodos , Oocitos , Partenogénesis , Testosterona/metabolismo , Células Tecales
10.
Reprod Domest Anim ; 55(2): 170-180, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31816136

RESUMEN

At present, many three-dimensional (3D) culture systems have been reported, improving the oocyte quality of in vitro maturation (IVM), yet the mechanism still needs to be further explored. Here we examined the effects of a new self-made 3D glass scaffold on buffalo oocyte maturation; meanwhile, the underlying mechanism on buffalo oocyte maturation was also detected. Compared to the two-dimensional (2D) glass dish culture, results revealed that the 3D culture can improve the first polar body rate of oocytes, subsequent cleavage and blastocysts rate of parthenogenetic activation embryos (p < .05). The extracellular matrix-related proteins COL1A1, COL2A1, COL3A1, FN and cell connection-related proteins N-cadherin, E-cadherin, GJA1 were found higher in cumulus cells of 3D culture. Moreover, in cumulus cells, proteins of the PI3K/AKT pathway reported being regulated by FN and E-cadherin including PI3K P85 and p-AKT were also higher in 3D culture. Furthermore, proapoptosis proteins P53, BAX, caspase-3 were lower in both cumulus cells and oocytes in 3D culture, while proteins PCNA and BCL2 showed the opposite result. Results also showed that the apoptosis was inhibited, and the proliferation was enhanced in cumulus cells of 3D culture. Finally, the cumulus expansion-related genes HAS2, CD44, HMMR, PTX3, PTGS2 were found higher in cumulus cells of 3D culture. Taken together, the 3D culture could promote oocyte maturation by regulating proteins correlated with the ECM, cell connection and PI3K/AKT pathway, inhibiting the apoptosis of cumulus cells and oocytes, enhancing the proliferation of cumulus cells and the cumulus expansion.


Asunto(s)
Búfalos/embriología , Células del Cúmulo/fisiología , Técnicas de Maduración In Vitro de los Oocitos/veterinaria , Animales , Apoptosis , Blastocisto , Búfalos/fisiología , Técnicas de Cultivo de Embriones/veterinaria , Embrión de Mamíferos , Desarrollo Embrionario , Matriz Extracelular/metabolismo , Femenino , Regulación del Desarrollo de la Expresión Génica , Vidrio , Técnicas de Maduración In Vitro de los Oocitos/instrumentación , Técnicas de Maduración In Vitro de los Oocitos/métodos , Oocitos/fisiología , Transducción de Señal
11.
Mol Biol Rep ; 46(1): 251-259, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30415444

RESUMEN

The binding of exogenous DNA to sperm is a key process for sperm-mediated gene transfer; however, the underlying molecular mechanisms have yet to be elucidated. In the present study, we aimed to identify the DNA binding proteins (DBPs) in rabbit sperm and to gain further understanding of the molecular mechanism of sperm and exogenous DNA interaction. Native polyacrylamide gel electrophoresis was used for separating free sperm proteins and complexes of DNA fragment/sperm proteins. A distinct band was found after Coomassie blue staining, and seven potential proteins were identified by mass spectrometry analysis. An analysis of the physical/chemical properties of the seven proteins revealed that the sperm inner acrosomal membrane protein IAM38 (IAM38) matched the features of the DBPs. Western blotting analysis showed that the IAM38 and CD4 were present in the sperm but not in the seminal plasma. Blocking of the IAM38 impaired the DNA-binding capacity of the sperm. Blocking the CD4 decreased the DNA-uptake capacity of the sperm but did not influence the DNA-binding capacity of the sperm. Moreover, the EGFP-positive embryos and EGFP-positive blastocysts were also decreased after IAM38 blocking or CD4 blocking in comparison with the control group. In conclusion, our results imply that foreign DNA first binds to the transmembrane IAM38 of the sperm plasma membrane and then forms the complex of DNA/IAM38/CD4 with CD4 to complete the transportation of exogenous DNA into the nucleus of sperm.


Asunto(s)
Acrosoma/metabolismo , Proteínas de Unión al ADN/aislamiento & purificación , Espermatozoides/metabolismo , Acrosoma/fisiología , Animales , Blastocisto/metabolismo , Antígenos CD4/metabolismo , Membrana Celular/metabolismo , ADN/análisis , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/fisiología , Ensayo de Cambio de Movilidad Electroforética/métodos , Masculino , Conejos , Cabeza del Espermatozoide/fisiología , Espermatozoides/fisiología
12.
Reprod Domest Anim ; 54(2): 258-269, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30220080

RESUMEN

The present study explored a suitable parthenogenetic activation (PA) procedure for rabbit oocytes and investigated the developmental potential of somatic cell nuclear transfer (SCNT) embryos using rabbit foetal fibroblasts (RFFs). The electrical activation had the optimal rate of blastocyst (14.06%) when oocytes were activated by three direct current (DC) pulses (40 V/mm, 20 µs each) followed by 6-dimethylaminopurine (6-DMAP) and cycloheximide (CHX) treatment; the blastocyst rate of ionomycin (ION) + 6-DMAP + CHX (12.07%) activation was higher than that of ION + 6-DMAP (8.6%) activation or ION + CHX (1.24%) activation; there was no significant difference in blastocyst rate between ION + 6-DMAP + CHX and DC + 6-DMAP + CHX groups. The blastocyst rate of ION + 6-DMAP + CHX-activated oocytes in the basic rabbit culture medium (M-199) + 10% foetal bovine serum (FBS; 14.28%) was higher than that in buffalo conditioned medium (5.75%) or G1/G2 medium (0), and the blastocyst rate was increased when M-199 + 10% FBS was supplemented with amino acids. Refreshing culture medium every day or every other day significantly increased the blastocyst rate. Treatment of donor cells with 0.5% FBS for 3-5 days increased blastocyst rate of SCNT embryos (33.33%) than no serum starvation (22.47%) or 0.5% FBS treatment for 6-9 days (23.61%); the blastocyst rate of SCNT embryos derived from nontransgenic RFFs was higher than that derived from transgenic RFFs by electroporation. The blastocyst development ability of SCNT embryos derived from RFFs by electroporation (32.22%) was higher than that of liposome (19.11%) or calcium phosphate (20.00%) transfection, and only the embryos from electroporation group have the EGFP expression (24.44%). In conclusion, this study for the first time systematically optimized the conditions for yield of rabbit embryo by SCNT.


Asunto(s)
Blastocisto/efectos de los fármacos , Desarrollo Embrionario/efectos de los fármacos , Técnicas de Transferencia Nuclear/veterinaria , Oocitos/efectos de los fármacos , Partenogénesis , Adenina/análogos & derivados , Adenina/farmacología , Animales , Blastocisto/fisiología , Cicloheximida/farmacología , Desarrollo Embrionario/fisiología , Femenino , Ionomicina/farmacología , Oocitos/fisiología , Conejos
13.
Reprod Domest Anim ; 54(8): 1104-1112, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31155763

RESUMEN

The objectives of present study were to evaluate the effect of casein kinase 1 (CK1) inhibition D4476 on in vitro maturation (IVM) and developmental competence of bovine oocytes. The cumulus oocyte complexes (COCs) were cultured in maturation medium with D4476 (0, 2, 5, 10, 20 µM) for 24 hr. After IVM and in vitro fertilization, through expansion average scores of cumulus cells (CCs), oocyte maturation efficiency, cleavage rate and blastocyst rate of zygote, we found 5 µM D4476 could increase the development potential of oocytes. After the COCs were treated with 5 µM D4476, the results of quantitative real-time PCR analysis, Lichen red staining and PI staining showed that under without affecting germinal vesicle breakdown and nuclear morphology, D4476 could significantly decrease CK1 and upregulate TCF-4 in oocytes. Furthermore, without influencing the level of Bad and CTSB, D4476 could significantly increase the expression of ß-catenin, TCF-4, Cx43, MAPK, PTGS-2, PTX-3, TGS-6, Bax and Bcl-2 in CCs. Western blot analysis revealed that the addition of 5 µM D4476 during the maturation of COCs resulted in a lower level of Cx43 protein at 12 hr and a higher expression of Cx43 protein at 24 hr compared to the group without D4476. These results indicate that adding optimum D4476 (5 µM) to maturation medium is beneficial to maturity efficiency and development competence of bovine oocytes.


Asunto(s)
Benzamidas/farmacología , Quinasa de la Caseína I/antagonistas & inhibidores , Bovinos , Fertilización In Vitro/veterinaria , Imidazoles/farmacología , Técnicas de Maduración In Vitro de los Oocitos/veterinaria , Oocitos/fisiología , Animales , Quinasa de la Caseína I/metabolismo , Técnicas de Cultivo de Embriones , Embrión de Mamíferos/fisiología , Desarrollo Embrionario , Fertilización In Vitro/efectos de los fármacos , Técnicas de Maduración In Vitro de los Oocitos/métodos , Masculino , Meiosis
14.
Reprod Domest Anim ; 54(1): 11-22, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30051521

RESUMEN

Low efficiency of somatic cell nuclear transfer (SCNT) embryos is largely attributable to imperfect reprogramming of the donor nucleus. The differences in epigenetic reprogramming between female and male buffalo cloned embryos remain unclear. We explored the effects of donor cell sex differences on the development of SCNT embryos. We and then compared the expression of DNA methylation (5-methylcytosine-5mC and 5-hydroxymethylcytosine-5hmC) and the expression level of relevant genes, and histone methylation (H3K9me2 and H3K9me3) level in SCNT-♀ and SCNT-♂ preimplantation embryos with in vitro fertilization (IVF) counterparts. In the study, we showed that developmental potential of SCNT-♀ embryos was greater than that of SCNT-♂ embryos (p < 0.05). 5mC was mainly expressed in SCNT-♀ embryos, whereas 5hmC was majorly expressed in SCNT-♂ embryos (p < 0.05). The levels of DNA methylation (5mC and 5hmC), Dnmt3b, TET1 and TET3 in the SCNT-♂ embryos were higher than those of SCNT-♀ embryos (p < 0.05). In addition, there were no significant differences in the expression of H3K9me2 at eight-stage of the IVF, SCNT-♀ and SCNT-♂embryos (p < 0.05). However, H3K9me3 was upregulated in SCNT-♂ embryos at the eight-cell stage (p < 0.05). Thus, KDM4B ectopic expression decreased the level of H3K9me3 and significantly improved the developmental rate of two-cell, eight-cell and blastocysts of SCNT-♂ embryos (p < 0.05). Overall, the lower levels of DNA methylation (5mC and 5hmC) and H3K9me3 may introduce the greater developmental potential in buffalo SCNT-♀ embryos than that of SCNT-♂ embryos.


Asunto(s)
Búfalos/embriología , Metilación de ADN/fisiología , Técnicas de Transferencia Nuclear/veterinaria , Factores Sexuales , Animales , Blastocisto/fisiología , Búfalos/metabolismo , Embrión de Mamíferos , Desarrollo Embrionario , Epigénesis Genética , Femenino , Fertilización In Vitro/veterinaria , Fibroblastos , Regulación del Desarrollo de la Expresión Génica , Histonas/metabolismo , Masculino
15.
Reprod Fertil Dev ; 28(3): 310-8, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25027718

RESUMEN

N-3 polyunsaturated fatty acids (n-3 PUFAs) have their first double bond at the third carbon from the methyl end of the fatty-acid chain and had been proven to be beneficial to human health. However, mammals cannot produce n-3 PUFAs by themselves because they lack the n-3 fatty-acid desaturase (Fat-1) gene. Thus, the possibility of producing sFat-1 transgenic rabbits was explored in this study. The transgenic cassette of pPGK1-sFat-1-CMV-EGFP was constructed and transgenic rabbit embryos were produced by intracytoplasmic sperm injection (ICSI). When 123 EGFP-positive embryos at the 2-8-cell stage were transplanted into the oviduct of four oestrous-synchronised recipients, two of them became pregnant and gave birth to seven pups. However, transfer of embryos into the uterus of oestrous-synchronised recipients and oviduct or uterus of oocyte donor rabbits did not result in pregnancy. The integration of the sFat-1 gene was confirmed in six of the seven live pups by PCR and Southern blot. The expression of the sFat-1 gene in the six transgenic pups was also detected by reverse transcription polymerase chain reaction (RT-PCR). Gas chromatography-mass spectrometry analysis revealed that transgenic rabbits exhibited an ~15-fold decrease in the ratio of n-6:n-3 PUFAs in muscle compared with wild-type rabbits and non-transgenic rabbits. These results demonstrate that sFat-1 transgenic rabbits can be produced by ICSI and display a low ratio of n-6:n-3 PUFAs.


Asunto(s)
Blastocisto/enzimología , Ácido Graso Desaturasas/biosíntesis , Ácidos Grasos Omega-3/metabolismo , Carne , Músculo Esquelético/metabolismo , Inyecciones de Esperma Intracitoplasmáticas/veterinaria , Animales , Animales Modificados Genéticamente , Técnicas de Cultivo de Embriones/veterinaria , Transferencia de Embrión/veterinaria , Inducción Enzimática , Ácido Graso Desaturasas/genética , Ácidos Grasos Omega-6/metabolismo , Femenino , Cromatografía de Gases y Espectrometría de Masas/veterinaria , Genotipo , Masculino , Fenotipo , Embarazo , Índice de Embarazo , Conejos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/veterinaria
16.
Res Nurs Health ; 39(5): 328-36, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27327537

RESUMEN

We explored the effects of acupressure training on older adults' sleep quality and cognitive function. Ninety older adults with impaired sleep quality were selected from screened volunteers and randomly divided into equal control and experimental groups; 82 completed the 1-year follow-up. Participants in the control group were given instructions on sleep health, while those in the experimental group received sleep health instructions plus individual and small group acupressure training sessions and support to practice the intervention on their own each day. All participants were assessed by trained assistants blind to study group allocation using Chinese versions of the Pittsburgh Sleep Quality Index, the Epworth Sleepiness Scale, the Mini-Mental State Examination, and four subscales from the revised Chinese version of the Wechsler Memory Scale, at baseline and at 3, 6, and 12 months. Repeated measures analysis of variance showed that acupressure training improved older adults' sleep quality and cognitive function, but the mediating effect of sleep on the relationship between acupressure training and cognitive function was not supported. Given the ease, simplicity, and safety of acupressure training observed with community-dwelling older adults in China, attempts should be made to replicate these preliminary positive findings with larger samples. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Acupresión/métodos , Cognición , Trastornos del Sueño-Vigilia/terapia , Anciano , China , Femenino , Humanos , Masculino , Pruebas Neuropsicológicas
17.
Reprod Biol ; 24(2): 100883, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38643607

RESUMEN

Fibroblast growth factor 10 (FGF10) plays critical roles in oocyte maturation and embryonic development; however, the specific pathway by which FGF10 promotes in vitro maturation of buffalo oocytes remains elusive. The present study was aimed at investigating the mechanism underlying effects of the FGF10-mediated extracellular regulated protein kinases (ERK) pathway on oocyte maturation and embryonic development in vitro. MEK1/2 (mitogen-activated protein kinase kinase) inhibitor U0126, alone or in combination with FGF10, was added to the maturation culture medium during maturation of the cumulus oocyte complex. Morphological observations, orcein staining, apoptosis detection, and quantitative real-time PCR were performed to evaluate oocyte maturation, embryonic development, and gene expression. U0126 affected oocyte maturation and embryonic development in vitro by substantially reducing the nuclear maturation of oocytes and expansion of the cumulus while increasing the apoptosis of cumulus cells. However, it did not have a considerable effect on glucose metabolism. These findings suggest that blocking the MEK/ERK pathway is detrimental to the maturation and embryonic development potential of buffalo oocytes. Overall, FGF10 may regulate the nuclear maturation of oocytes and cumulus cell expansion and apoptosis but not glucose metabolism through the MEK/ERK pathway. Our findings indicate that FGF10 regulates resumption of meiosis and expansion and survival of cumulus cells via MEK/ERK signaling during in vitro maturation of buffalo cumulus oocyte complexes. Elucidation of the mechanism of action of FGF10 and insights into oocyte maturation should advance buffalo breeding. Further studies should examine whether enhancement of MEK/ERK signaling improves embryonic development in buffalo.


Asunto(s)
Búfalos , Butadienos , Factor 10 de Crecimiento de Fibroblastos , Técnicas de Maduración In Vitro de los Oocitos , Nitrilos , Oocitos , Animales , Búfalos/embriología , Factor 10 de Crecimiento de Fibroblastos/farmacología , Butadienos/farmacología , Oocitos/efectos de los fármacos , Técnicas de Maduración In Vitro de los Oocitos/veterinaria , Nitrilos/farmacología , Femenino , Oogénesis/efectos de los fármacos , Células del Cúmulo/efectos de los fármacos , Apoptosis/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Desarrollo Embrionario/efectos de los fármacos , MAP Quinasa Quinasa 2/antagonistas & inhibidores , MAP Quinasa Quinasa 2/metabolismo
18.
Cell Reprogram ; 26(2): 79-84, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38579133

RESUMEN

Cumulus cells (CCs) synthesize estrogens that are essential for follicular development. However, the effects of androgen on estrogen production in buffalo CCs remain unknown. In the present study, the impacts of testosterone on estrogen synthesis of buffalo CCs surrounding in vitro-matured oocytes were investigated. The results showed that testosterone supplementation improved both the expression levels of estrogen synthesis-related genes (CYP11A1, CYP19A1, and 17ß-HSD) and the secretion levels of estradiol in buffalo CCs surrounding in vitro-matured oocytes. Furthermore, testosterone treatment enhanced the sensitivity of buffalo CCs surrounding in vitro-matured oocytes to follicle-stimulating hormone (FSH). This study indicated that testosterone supplementation promoted the estrogen synthesis of buffalo CCs surrounding in vitro-matured oocytes mainly through strengthening the responsiveness of CCs to FSH. The present study serves as a foundation of acquiring high-quality recipient oocytes for buffalo somatic cell nuclear transfer.


Asunto(s)
Búfalos , Testosterona , Femenino , Animales , Testosterona/farmacología , Testosterona/metabolismo , Células del Cúmulo , Oocitos , Hormona Folículo Estimulante/farmacología , Hormona Folículo Estimulante/metabolismo , Suplementos Dietéticos , Estrógenos/farmacología , Estrógenos/metabolismo
19.
Theriogenology ; 221: 47-58, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38554613

RESUMEN

Zinc, an essential trace mineral, exerts a pivotal influence in various biological processes. Through zinc concentration analysis, we found that the zinc concentration in the bovine embryo in vitro culture (IVC) medium was significantly lower than that in bovine follicular fluid. Therefore, this study explored the impact of zinc sulfate on IVC bovine embryo development and investigated the underlying mechanism. The results revealed a significant decline in zygote cleavage and blastocyst development rates when zinc deficiency was induced using zinc chelator N, N, N', N'-Tetrakis (2-pyridylmethyl) ethylenediamine (TPEN) in culture medium during embryo in vitro culture. The influence of zinc-deficiency was time-dependent. Conversely, supplementing 0.8 µg/mL zinc sulfate to culture medium (CM) increased the cleavage and blastocyst formation rate significantly. Moreover, this supplementation reduced reactive oxygen species (ROS) levels, elevated the glutathione (GSH) levels in blastocysts, upregulated the mRNA expression of antioxidase-related genes, and activated the Nrf2-Keap1-ARE signaling pathways. Furthermore, 0.8 µg/mL zinc sulfate enhanced mitochondrial membrane potential, maintained DNA stability, and enhanced the quality of bovine (in vitro fertilization) IVF blastocysts. In conclusion, the addition of 0.8 µg/mL zinc sulfate to CM could enhance the antioxidant capacity, activates the Nrf2-Keap1-ARE signaling pathways, augment mitochondrial membrane potential, and stabilizes DNA, ultimately improving blastocyst quality and in vitro bovine embryo development.


Asunto(s)
Antioxidantes , Zinc , Femenino , Animales , Bovinos , Antioxidantes/farmacología , Antioxidantes/metabolismo , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Zinc/farmacología , Zinc/metabolismo , Sulfato de Zinc/farmacología , Factor 2 Relacionado con NF-E2/metabolismo , Técnicas de Cultivo de Embriones/veterinaria , Desarrollo Embrionario , Fertilización In Vitro/veterinaria , Blastocisto/fisiología , Glutatión/metabolismo , ADN/metabolismo
20.
Theriogenology ; 215: 58-66, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38008049

RESUMEN

In vitro maturation (IVM) methods for porcine oocytes are still deficient in achieving full developmental capacity, as the currently available oocyte in vitro culture systems still have limitations. In vitro embryo production must also improve the porcine oocyte IVM system to acquire oocytes with good developmental potential. Herein, we tested a three-dimensional (3D) glass scaffold culture system for porcine oocyte maturation. After 42 h, we matured porcine cumulus-oocyte complexes (COCs) on either two-dimensional glass dishes (2D-B), two-dimensional microdrops (2D-W), or 3D glass scaffolds. The 3D glass scaffolds were tested for porcine oocyte maturation and embryonic development. Among these culture methods, the extended morphology of the 3D group maintained a 3D structure better than the 2D-B and 2D-W groups, which had flat COCs that grew close to the bottom of the culture vessel. The COCs of the 3D group had a higher cumulus expansion index and higher first polar body extrusion rate, cleavage rate, and blastocyst rate of parthenogenetic embryos than the 2D-B group. In the 3D group, the cumulus-expansion-related gene HAS2 and anti-apoptotic gene Bcl-2 were significantly upregulated (p < 0.05), while the pro-apoptotic gene Caspase3 was significantly downregulated (p < 0.05). The blastocysts of the 3D group had a higher relative expression of Bcl-2, Oct4, and Nanog than the other two groups (p < 0.05). The 3D group also had a more uniform distribution of mitochondrial membrane potential and mitochondria (p < 0.05), and its cytoplasmic active oxygen species content was much lower than that in the 2D-B group (p < 0.05). These results show that 3D glass scaffolds dramatically increased porcine oocyte maturation and embryonic development after parthenogenetic activation, providing a suitable culture model for porcine oocytes.


Asunto(s)
Desarrollo Embrionario , Oocitos , Embarazo , Femenino , Porcinos , Animales , Oocitos/fisiología , Técnicas de Maduración In Vitro de los Oocitos/veterinaria , Técnicas de Maduración In Vitro de los Oocitos/métodos , Partenogénesis , Blastocisto/fisiología , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Células del Cúmulo/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA